
ME 780

Lecture 5: Recurrent Neural Networks

Nima Mohajerin

University of Waterloo

WAVE Lab
nima.mohajerin@uwaterloo.ca

July 4, 2017

1/25

ME 780

Overview

1 Recap

2 RNN Architectures for Learning Long Term Dependencies

3 Other RNN Architectures

4 System Identification with RNNs

2/25

ME 780
Recap

RNNs

RNNs deal with sequential information.
RNNs are dynamic systems. Frequently their dynamic is
represented via state-space equations.

3/25

ME 780
Recap

A simple RNN

A simple RNN in discrete-time domain:

x(k) = f
(
Ax(k − 1) + Bu(k) + bx

)
y(k) = g

(
Cx(k) + by

)
x(k) ∈ Rs : RNN state vector, no. of states = no. of hidden neurons = s
y(k) ∈ Rn : RNN output vector, no. of output neurons = n
u(k) ∈ Rm : Input vector to RNN (Independent input)

A ∈ Rs × Rs : State feedback weight matrix
B ∈ Rs × Rm : Input weight matrix

bx ∈ Rs : Bias term
C ∈ Rn × Rs : State to output weight matrix

by ∈ Rn : Output bias

4/25

ME 780
Recap

Back Propagation Through Time

One data sample:
Input: U =

[
u(k0 + 1) u(k0 + 2) . . . u(k0 + T)

]
.

output: Yt =
[
yt(k0 + 1) yt(k0 + 2) . . . yt(k0 + T)

]
.

SSE cost (per sample):

L = 0.5
T∑

k=1
e(k0+k)>e(k0+k) = 0.5

T∑
k=1

n∑
i=1

(
yi (k0+k)−yt,i (k0+k)

)2

Batch cost (batch size = D):
L = 0.5

∑D
d=1

∑T
k=1 ed (k0 + k)>ed (k0 + k)

5/25

ME 780
Recap

Gradients
To do a derivative-based optimization, we need the gradient of L:

∂L
∂aij

=
T∑

k=1
e>(k0 + k)

∂e(k0 + k)

∂aij
=

T∑
k=1

e>(k0 + k)
∂y(k0 + k)

∂aij

∂y(k)

∂aij
=
∂
(
Cx(k) + by

)
∂aij

g′
(
Cx(k) + by

)
= C∂x(k)

∂aij
g′
(
Cx(k) + by

)
∂x(k)

∂aij
=
∂v(k)

∂aij
f ′(v(k)), v(k) = Ax(k − 1) + Bu(k) + bx

∂v(k)

∂aij
=
∂A
∂aij

x(k − 1) + A∂x(k − 1)

∂aij
=

0
...

xj(k − 1)
0
...

s×1

+ A∂x(k − 1)

∂aij

6/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Section 2

RNN Architectures for Learning Long Term
Dependencies

7/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Gated Architectures

g(x) = x� σ(Ax + b)

� : element-wise multiplicaiton
x ∈ Rn

g(x) ∈ Rn

A ∈ Rn × Rn

8/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Preserve Information with Gated Architectures

The idea is that if a neuron has a self-feedback with weight
equal to one, the information will retain for an infinite amount
of time when unfolded.
Some information should decay, some should not be stored.
With a gate the intention is to control the self-feedback
weight.

9/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Gated Recurrent Unit

gf (k) =σ
(
Wi

f u(k) + Wo
f yh(k − 1)

)
gi (k) =σ

(
Wi

iu(k) + Wo
i yh(k − 1)

)
m(k) =h

(
Wi

y u(k) + Wy
y (gf � yh(k − 1))

)
yh(k) =gi (k)� yh(k − 1) +

(
1	 gi (k)

)
�m(k)

10/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Long Short Term Memory Cell

gi(k) =σ
(
Wi

i u(k) + Wo
i yh(k − 1) + Wc

i c(k − 1) + bi
)

gf (k) =σ
(
Wi

f u(k) + Wo
f yh(k − 1) + Wc

f c(k − 1) + bf
)

go(k) =σ
(
Wi

ou(k) + Wo
oyh(k − 1) + Wc

oc(k − 1) + bo
)

c(k) =gi(k) � f
(
Wi

cu(k) + Wo
c yh(k − 1)

)
+ gf (k) � c(k − 1)

m(k) =c(k) � go(k)
yh(k) =h(Wy m(k − 1) + by). 11/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Learning Long-Term Dependencies

One way to avoid gradient exploding is to clip the gradient:

if ||g|| > v , g← gv
||g||

One way to address vanishing gradient is to use a regularizer
that maintains the magnitude of the gradient vector (Pascanu et

al. 2013):

Ω =
∑

k

(||∇x(k)L ∂x(k)
∂x(k−1) ||

||∇x(k)L||
− 1

)2

12/25

ME 780
Other RNN Architectures

Section 3

Other RNN Architectures

13/25

ME 780
Other RNN Architectures

RNNs as Associative Memories

An RNN is a nonlinear chaotic system.
It can have many attractors in its phase space.
Hopfield (1985) model is the most popular one. It is a fully
connected recurrent model where the feedback weight matrix
is symmetric and has diagonal elements equal to zero.
Hopfield model is stable in a Lyapunov sense if the output
neurons are updated one at a time. (Refer to Du KL, Swamy MNS (2006)
Neural networks in a softcomputing framework doe further discussion)

14/25

ME 780
Other RNN Architectures

RNNs as Associative Memories

15/25

ME 780
Other RNN Architectures

RNNs as Associative Memories

16/25

ME 780
Other RNN Architectures

Deep RNNs

17/25

ME 780
Other RNN Architectures

Deep RNNs

We can generalize this idea and create a connection matrix:

18/25

ME 780
Other RNN Architectures

Deep RNNs
Example:

C =

(to L1) (to L2) (to L3) (to output)

1 0 1 0 (from input)
1 0 1 1 (from L1)
1 0 1 0 (from L2)
0 1 1 1 (from L3)

19/25

ME 780
Other RNN Architectures

Reservoir Computing

One approach to cope with the difficulty of training RNNs.
The idea is to use a very large RNN, as a reservoir and use it
to transform the input.
The transformed input by the RNN is then linearly combined
to form the output.
The linear weights are trained while the reservoir (RNN) is
fixed.
Echo State Networks (continuous output neurons), Liquid
State Machines (spiking binary neurons)

20/25

ME 780
Other RNN Architectures

Reservoir Computing

How to set the reservoir weights?
Set weights in such a way that the RNN is at the edge of
stability: set the eigenvalues of the state Jacobian close to
one.

J(k) =
∂x(k)

∂x(k − 1)

Echo State Networks (continuous output neurons), Liquid
State Machines (spiking binary neurons)

21/25

ME 780
System Identification with RNNs

Section 4

System Identification with RNNs

22/25

ME 780
System Identification with RNNs

Reconstructing the System States

We have a set of observations, i.e., measurements of a
dynamic system input and output (states).
We want to learn the system dynamics
RNNs are universal approximators for dynamic systems
(K. Funahashi and Y. Nakamura, 1993)

Delay embedding theorem (Taken’s theorem) States that a
chaotic dynamical system can be reconstructed from a
sequence of observations of the system.
It leads to Auto-Regressive with eXogenous (ARX) models.

23/25

ME 780
System Identification with RNNs

Nonlinear Auto-Regressive with eXogenous Inputs

y(k) = F
(
u(k),u(k − 1), . . . ,u(k − dx), y(k − 1), . . . , y(k − dy)

)
.

F can be constructed using a neural network. Typically an
MLP is used.

24/25

ME 780
System Identification with RNNs

Teacher Forcing (Parallel Training)

Is mainly used in NARX architectures.
Substitute the past network predictions with the targets.

y(k) = F
(
u(k),u(k−1), . . . ,u(k−dx), yt(k−1), . . . , yt(k−dy)

)
.

Converts the RNN to a FFNN (Single-step prediction).

25/25

	Recap
	RNN Architectures for Learning Long Term Dependencies
	Other RNN Architectures
	System Identification with RNNs

