
ME 780

Lecture 4: Optimization for Training Deep Models
- Algorithms

Ali Harakeh

University of Waterloo

WAVE Lab
ali.harakeh@uwaterloo.ca

June 13, 2017

1/47



ME 780

Overview

1 Parameter Initialization Strategies

2 First Order Optimization Algorithms

3 Optimization Strategies And Meta-Algorithms

4 Conclusion: Designing Models to Aid Optimization

2/47



ME 780
Parameter Initialization Strategies

Section 1

Parameter Initialization Strategies

3/47



ME 780
Parameter Initialization Strategies

Introduction

Training deep learning algorithms is a non-convex problem
that is iterative in nature, and thus requires us to specify
initial points.
The effect of the choice of the initial point in deep learning is
very important.
The initial point can effect the speed of convergence, the
quality of the final solution, and if the algorithm converges
all together.
The major, most important observation that I want you all to
remember is the following: points of comparable cost will
have a different generalization error !

4/47



ME 780
Parameter Initialization Strategies

Good Characteristics Of Initial Parameters

Modern initialization strategies are simple and heuristic.
These strategies are designed to achieve some ”nice”
properties when the network is initialized.

5/47



ME 780
Parameter Initialization Strategies

Good Characteristics Of Initial Parameters

However, we do not have a good understanding of which of
these properties remain after the first iteration of training.
Furthermore, what is beneficial for optimization can be
detrimental to learning and generalization.
Basically, we have very primitive understanding on the effect
of the initial point on generalization, which offers no guidance
in the selection procedure.

6/47



ME 780
Parameter Initialization Strategies

Breaking The Weight Space Symmetry

One of the properties we are certain of is that initial
parameters should break the symmetry.
If two hidden units with the same activation function are
connected to the same inputs, then these units must have
different initial parameters.
This property prevents both the loss of input patterns in the
null space of the forward pass, and the loss of gradient
patterns in the null space of the backward pass.
The above motivates random initialization.

7/47



ME 780
Parameter Initialization Strategies

Random Initialization

We could explicitly search for a large set of basis functions
that are all mutually different from each other. However, the
computation cost of this method outweighs the benefits that
it provides.
Example: If we have at most as many outputs as inputs, we
could use Gram-Schmidt orthogonalization on an initial weight
matrix, and be guaranteed that each unit computes a very
different function from each other unit.
Random Initialization from a high entropy distribution over
a high dimensional space is much computationally cheaper,
while resulting in almost the same symmetry breaking effect.

8/47



ME 780
Parameter Initialization Strategies

Random Initialization

Random Initialization is performed by setting the biases to a
constant (0 or 0.01 in most cases).
Weights are initialized by sampling from either a Gaussian or a
uniform distribution (the choice doesn’t seem to matter
much).
The scale of the initial distribution, however, does have a
large effect on both the outcome of the optimization
procedure and on the ability of the network to generalize.

9/47



ME 780
Parameter Initialization Strategies

Random Initialization

Larger initial weights will yield a stronger symmetry breaking
effect, helping to avoid redundant units. (Also prevents loss of
signal in forward pass)
However, initial weights that are too large may result in
exploding values during forward propagation or
back-propagation. (choas in RNNs)
The scale of the initial distribution, however, does have a
large effect on both the outcome of the optimization
procedure and on the ability of the network to generalize.

10/47



ME 780
Parameter Initialization Strategies

Normalized (Xavier) Initialization

Proposed by Xavier Glorot and Yoshua Bengio in 2010.
Validated by He et al. for ReLU layers in 2015.
He et al. in their paper titled: ”Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet
Classification” derived an initialization specific to ReLU layers,
where the weights are initialized as:

w = N (0, 1)

√
2
n

A rule of the thumb is to always use xavier initialization when
training ReLU based networks from scratch.

11/47



ME 780
First Order Optimization Algorithms

Section 2

First Order Optimization Algorithms

12/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

13/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

Stochastic Gradient Decent (SGD) and its variants are
probably the most used optimization techniques for deep
model training.
The learning rate ε is an essential parameter. In practice, it is
necessary to gradually decrease the learning rate over time.
This is because SGD gradient estimation introduces a source
of noise, caused by the random minibatch sampling.
However, the true gradient becomes closer to 0 as we
converge to a minimum.

14/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

The sufficient conditions for guaranteed convergence of SGD
is that:

∞∑
k=1

εk =∞

∞∑
k=1

ε2k < 0

15/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

In practice, it is common to decay the learning rate linearly
until iteration τ according to:

εk = (1− α)ε0 + αετ

α = k
τ .

After iteration τ we keep ε constant.

16/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

Choosing ετ , ε0 and τ is more of an art than a science.
This is done by monitoring the learning curves that plot the
objective functions as a function of time.
Large oscillations implies one is using a large ε0.
Gentle oscillations are fine, especially if we are using a
stochastic cost functions.

17/47



ME 780
First Order Optimization Algorithms

Stochastic Gradient Descent

Typically, the optimal initial learning rate, in terms of total
training time and the final cost value, is higher than the
learning rate that yields the best performance after the first
100 iterations or so.
It is usually best to monitor the first several iterations and use
a learning rate that is higher than the best-performing
learning rate at this time, but not so high that it causes severe
instability
τ is chosen as the number of iterations it takes for the
algorithm to go through a few hundred passes through the
training set. ετ is chosen to be approximately 1% of ε0.

18/47



ME 780
First Order Optimization Algorithms

Momentum

19/47



ME 780
First Order Optimization Algorithms

Momentum

Momentum tries to remedy the slowness of SGD especially in
face of high curvature, small but consistent gradients, or noisy
gradients. (Ill conditioning !)
The momentum algorithm accumulates an exponentially
decaying moving average of past gradients and continues to
move in their direction.
Analogous to rolling a ball with mass and gravity on the
topology of the objective function.
α ∈ [0, 1] is a hyperparameter that determines how quickly
the contributions of previous gradients exponentially decay. In
practice, α is set to be 0.5, 0.9 and 0.99.

20/47



ME 780
First Order Optimization Algorithms

Nestrov Momentum

21/47



ME 780
First Order Optimization Algorithms

Nestrov Momentum

The difference between Nesterov momentum and standard
momentum is where the gradient is evaluated.
With Nesterov momentum the gradient is evaluated after the
current velocity is applied.
Thus one can interpret Nesterov momentum as attempting to
add a correction factor to the standard method of momentum.

22/47



ME 780
First Order Optimization Algorithms

AdaGrad

23/47



ME 780
First Order Optimization Algorithms

AdaGrad

AdaGrad individually adapts the learning rates of all model
parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values.
The parameters with the largest partial derivative of the loss
have a correspondingly rapid decrease in their learning rate,
while parameters with small partial derivative shave a
relatively small decrease in their learning rate.
The net effect is greater progress in the more gently sloped
directions of parameter space.

24/47



ME 780
First Order Optimization Algorithms

AdaGrad

AdaGrad performs well for some but not all deep learning
models.
Empirically it has been found that for training deep neural
network models the accumulation of squared gradients from
the beginning of training can result in a premature and
excessive decrease in the effective learning rate.

25/47



ME 780
First Order Optimization Algorithms

AdaGrad

AdaGrad is designed to converge rapidly when applied to a
convex function. When applied to a non-convex function to
train a neural network, the learning trajectory may pass
through many different structures and eventually arrive at a
region that is a locally convex bowl.
AdaGrad shrinks the learning rate according to the entire
history of the squared gradient and may have made the
learning rate too small before arriving at such a convex
structure.

26/47



ME 780
First Order Optimization Algorithms

RMSProp

27/47



ME 780
First Order Optimization Algorithms

RMSProp

RMSProp modifies AdaGrad to perform better in the
non-convex setting by changing the gradient accumulation
into an exponentially weighted moving average.
RMSProp uses an exponentially decaying average to discard
history from the extreme past so that it can converge rapidly
after finding a convex bowl, as if it were an instance of the
AdaGrad algorithm initialized within that bowl.
Empirically, RMSProp has been shown to be an eïňĂective
and practical optimization algorithm for deep neural networks.
It is currently one of the go-to optimization methods being
employed routinely by deep learning practitioners.

28/47



ME 780
First Order Optimization Algorithms

Adam

29/47



ME 780
First Order Optimization Algorithms

Adam

Adam (adaptive moments) is a variant of RMS prop and
momentum with a few important distinctions.
First, in Adam, momentum is incorporated directly as an
estimate of the first order moment (with exponential
weighting) of the gradient. (No theoretical motivation !)
Second, Adam includes bias corrections to the estimates of
both the first-order moments (the momentum term) and the
(uncentered) second-order moments to account for their
initialization at the origin.
Conclusion: Always use Adam, it is fairly robust to the choices
of hyperparameters and available in many deep learning
packages.

30/47



ME 780
Optimization Strategies And Meta-Algorithms

Section 3

Optimization Strategies And Meta-Algorithms

31/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

Batch Normalization(Ioffe and Szegedy, 2015) is one of the
most exciting innovations in optimizing neural networks.
It is not an optimization algorithm, but a method of adaptive
reparameterization.
Motivated by the difficulty of training very deep models.

32/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

Training a deep model involves parameter updates for each
layer via gradient direction under the assumptions that other
layers are not changing.
In practice, all layers are updated simultaneously.
This can cause unexpected results in optimization. Example ?

33/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

It is very hard to choose an appropriate learning rate, because
the effects of an update to the parameters for one layer
depends so strongly on all of the other layers.
Second order optimization methods tries to remedy this
phenomenon by taking into account second order effects.
However, in very deep networks, the effects of higher order
effects is very prominent.
Solution: Build an n-th order optimization algorithm !

34/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

Off course not !
Batch normalization provides an elegant way of
reparametrizing almost any deep network.
It can be applied to any layer, and the reparametrization
significantly reduces the problem of coordinating updates
across many layers.

35/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

Let X be a minibatch output of the layer we would like to
normalize.
Batch normalization operates according to the following
formula:

X← X− µ
σ

µ is a vector containing the mean of each unit, σ is a vector
of standard deviations for each unit. These vectors are
broadcasted i.e. normalization occurs row wise.
The rest of the network operates on X as usual.

36/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

At training time:

µ = 1
m

∑
Xi ,:

σ =

√
δ + 1

m
∑

(X− µ)2
i

We can back-propagate through these operations!

37/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

This means that the gradient will never propose an operation
that acts simply to increase the standard deviation or mean of
xi ; the normalization operations remove the effect of such an
action and zero out its component in the gradient.
At test time, µ and σ are replaced by a moving average of the
mean and standard deviation that was collected during
training.

38/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization

39/47



ME 780
Optimization Strategies And Meta-Algorithms

Batch Normalization: Conclusion

Improves gradient flow through the network.
Allows higher learning rates.
Reduces the strong dependence on initialization.
Acts as a form of regularization in a funny way, and slightly
reduces the need for dropout, maybe ?

40/47



ME 780
Optimization Strategies And Meta-Algorithms

Greedy Supervised Pretraining

Sometimes, directly training a model to solve a specific task
can be too ambitious if the model is complex and hard to
optimize or if the task is very difficult.
It can also be more effective to train the model to solve a
simpler task, then move on to confront the final task.
Greedy algorithms break a problem into many components,
then solve for the optimal version of each component in
isolation.
Unfortunately, combining the individually optimal components
is not guaranteed to yield an optimal complete solution.

41/47



ME 780
Optimization Strategies And Meta-Algorithms

Greedy Supervised Pretraining

Greedy algorithms can be computationally much cheaper than
algorithms that solve for the best joint solution, and the
quality of a greedy solution is often acceptable if not optimal.
Greedy algorithms may also be followed by a fine tuning stage
in which a joint optimization algorithm searches for an
optimal solution to the full problem.
Initializing the joint optimization algorithm with a greedy
solution can greatly speed it up and improve the quality of the
solution it finds.

42/47



ME 780
Optimization Strategies And Meta-Algorithms

Greedy Supervised Pretraining

43/47



ME 780
Optimization Strategies And Meta-Algorithms

Greedy Supervised Pretraining

44/47



ME 780
Conclusion: Designing Models to Aid Optimization

Section 4

Conclusion: Designing Models to Aid
Optimization

45/47



ME 780
Conclusion: Designing Models to Aid Optimization

Conclusion

To improve optimization, the best strategy is not always to
improve the optimization algorithm.
In practice, it is more important to choose a model family
that is easy to optimize than to use a powerful optimization
algorithm.
Modern neural nets have been designed so that their local
gradient information corresponds reasonably well to moving
toward a distant solution.
Other model design strategies can help to make optimization
easier.
Example: auxiliary losses, skip connections.

46/47


	Parameter Initialization Strategies
	First Order Optimization Algorithms
	Optimization Strategies And Meta-Algorithms
	Conclusion: Designing Models to Aid Optimization

