Fully Convolutional Networks for Semantic Segmentation

Evan Shelhamer , Jonathan Long , and Trevor Darrel UC Berkeley

Presented by: Martin Cote

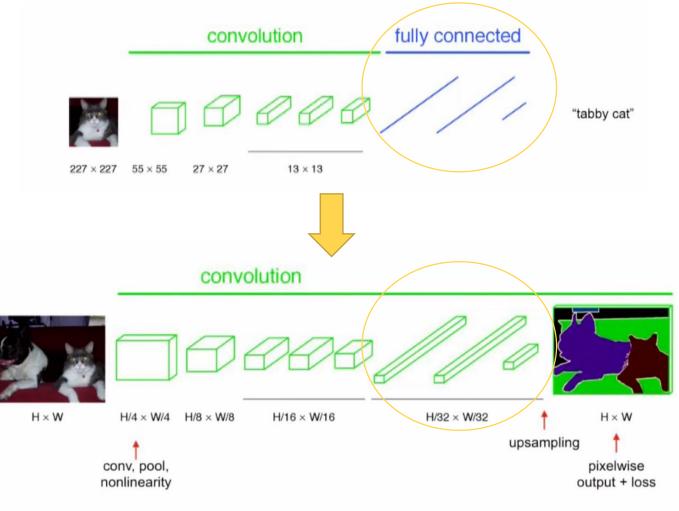
Prepared for: ME780 Perception for Autonomous Driving

Overview

- Motivation
- Network Architecture
 - Fully convolutional networks
 - Skip layers
- Results
- Summary

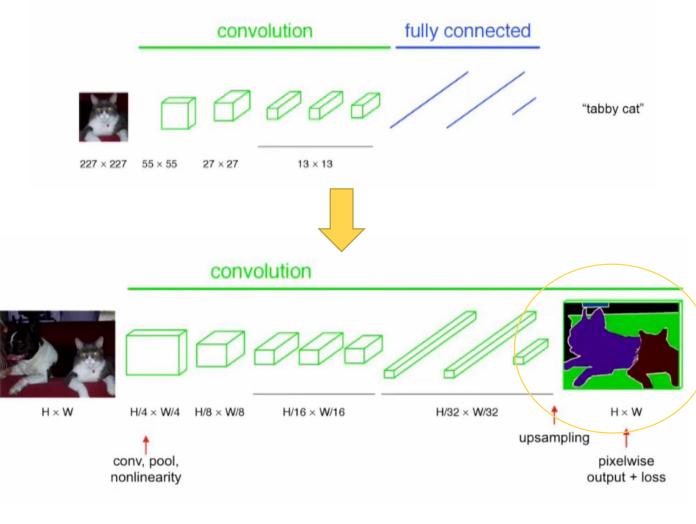
Motivation

- Use convnets to make pixel-wise predictions
- Semantic segmentation provides the "what" and "where"
- Does not require
 - Patchwise training
 - Refinement by superpixel projection, random field regularization, filtering, or local classification
 - interlacing to obtain dense output
 - multi-scale pyramid
 - saturating tanh nonlinearities
 - ensembles

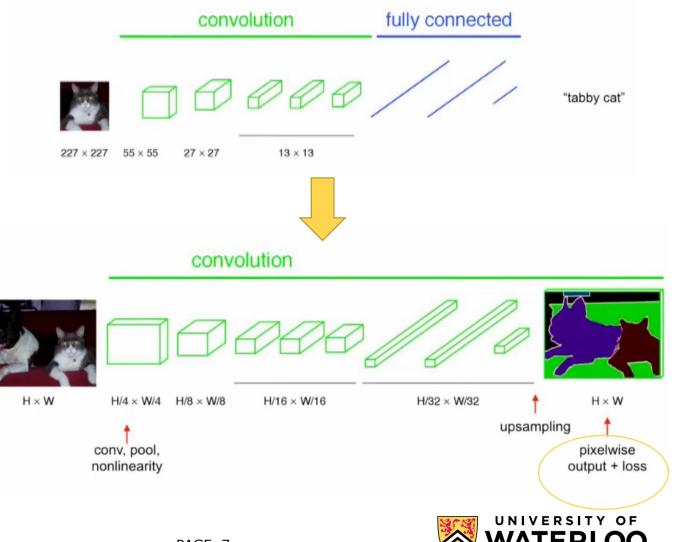


convolution fully connected Changes from a standard Convnet classifier "tabby cat" 227×227 55×55 27×27 13×13 convolution $H \times W$ $H/4 \times W/4$ $H/8 \times W/8$ H/16 × W/16 H/32 × W/32 $H \times W$ upsampling pixelwise conv, pool, nonlinearity output + loss

Changes from a standard Convnet classifier

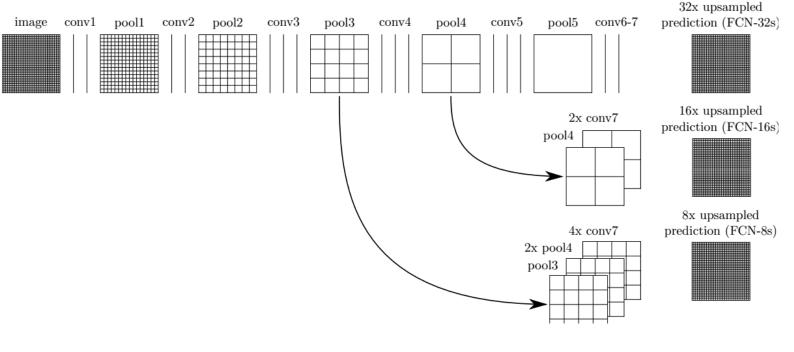

1. Change fully connected layers to convolution layers with 1 x 1 output, so network is "fully convolutional, and no layers have pre-defined input size

Changes from a standard Convnet classifier


- 1. Change fully connected layers to convolution layers with 1 x 1 output, so network is "fully convolutional, and no layers have pre-defined input size
- 2. Add an up sampling convolution layer, to get back to an output of the input's image H x W

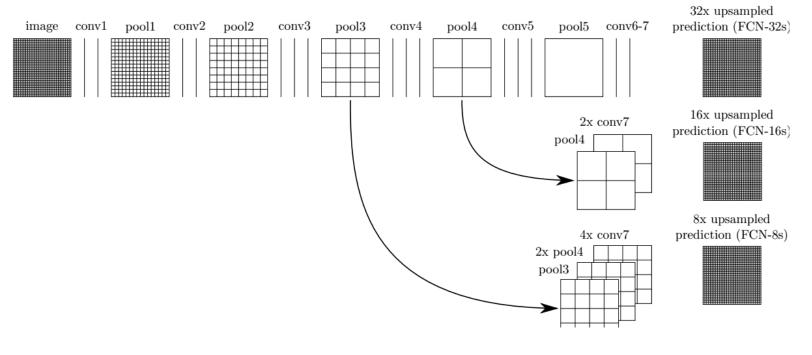
Changes from a standard Convnet classifier

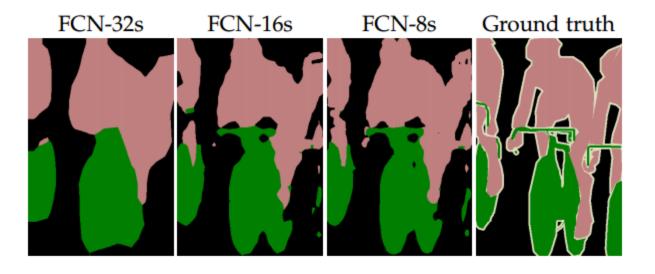
- 1. Change fully connected layers to convolution layers with 1 x 1 output, so network is "fully convolutional, and no layers have pre-defined input size
- 2. Add an up sampling convolution layer, to get back to an output of the input's image H x W
- 3. Pper-pixel softmax loss for end to end learning


This strategy was adopted to other well known networks, and tested on the PASCAL VOC2011 validation set

	FCN-AlexNet	FCN-VGG16	FCN-GoogLeNet ³
mean IU	39.8	56.0	42.5
forward time	16 ms	100 ms	20 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

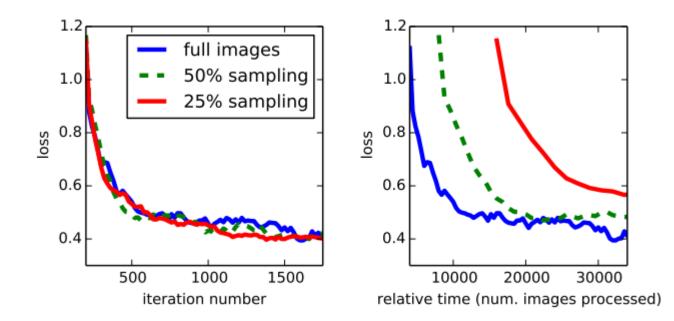
Skip Layers


- Skip layers were introduced to combine
 - Shallow local layers which contains "where"
 - Deep global layers which contains "what"



Deep Jet

- Final layers to be fused are
 - aligned by scaling and cropping
 - Concatenated
 - Passed into 1 x 1 scoring layer



- Training the network in stages (adding 1 skip stream at a time) did not provide significant improvements over training all at once
- The paper conclude they've reached diminishing returns between FCN-16s and FCN-8s

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
FCN-32s	90.5	76.5	63.6	83.5
FCN-16s	91.0	78.1	65.0	84.3
FCN-8s at-once	91.1	78.5	65.4	84.4
FCN-8s staged	91.2	77.6	65.5	84.5
FCN-32s fixed	82.9	64.6	46.6	72.3
FCN-pool5	87.4	60.5	50.0	78.5
FCN-pool4	78.7	31.7	22.4	67.0
FCN-pool3	70.9	13.7	9.2	57.6

• Patch sampling is compared to full image training, and full image training converges quicker, with similar accuracy

FCN-32s = Fully convolutional version of VGG16 FCN-16s = Fully convolutional version of VGG16 with 1 skip layer FCN-8s = Fully convolutional version of VGG16 with 2 skip layer

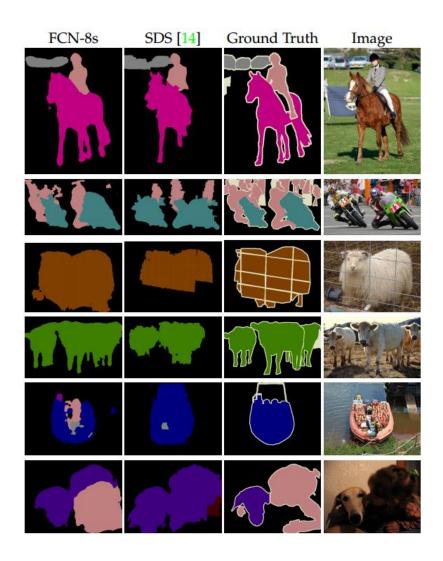
PASCAL VOC 11/12

	mean IU VOC2011 test	mean IU VOC2012 test	inference time
R-CNN [5]	47.9	-	-
SDS [14]	52.6	51.6	$\sim 50~{ m s}$
FCN-8s	67.5	67.2	\sim 100 ms

NYUDv2

	pixel acc.	mean acc.	mean IU	f.w. IU
Gupta <i>et al</i> . [15]	60.3	-	28.6	47.0
FCN-32s RGB	61.8	44.7	31.6	46.0
FCN-32s RGB-D	62.1	44.8	31.7	46.3
FCN-32s HHA	58.3	35.7	25.2	41.7
FCN-32s RGB-HHA	65.3	44.0	33.3	48.6

SIFT Flow


	pixel acc.	mean acc.	mean IU	f.w. IU	geom. acc.
Liu et al. [57]	76.7	-	-	-	-
Tighe et al. [58] transfer	-	-	-	-	90.8
Tighe et al. [59] SVM	75.6	41.1	-	-	-
Tighe et al. [59] SVM+MRF	78.6	39.2	-	-	-
Farabet et al. [12] natural	72.3	50.8	-	-	-
Farabet et al. [12] balanced	78.5	29.6	-	-	-
Pinheiro et al. [13]	77.7	29.8	-	-	-
FCN-8s	85.9	53.9	41.2	77.2	94.6

PASCAL context

59 class	pixel acc.	mean acc.	mean IU	f.w. IU
O_2P	-	-	18.1	-
CFM	-	-	34.4	-
FCN-32s	65.5	49.1	36.7	50.9
FCN-16s	66.9	51.3	38.4	52.3
FCN-8s	67.5	52.3	39.1	53.0

FCN-32s = Fully convolutional version of VGG16 FCN-16s = Fully convolutional version of VGG16 with 1 skip layer FCN-8s = Fully convolutional version of VGG16 with 2 skip layer

Summary

- Contribution: Train FCNs end-to-end for pixelwise prediction
- Able to accept inputs of any size due to fully convolutional network
- Skip layers combines local and global features
- 30% improvement on PASCAL VOC2012, as well as improvement on other data sets

UNIVERSITY OF WATERLOO

QUESTIONS