
ME 780
Nonlinear State Estimation for Robotics and Computer Vision

Applications
Spring 2017

Instructor: Professor Steven Waslander (stevenw@uwaterloo.ca)

Course Coordinator: Arun Das (adas@uwaterloo.ca)

Overview and Objectives

The course will be addressing two concepts:

1. Nonlinear State Estimation: Present a mathematical foundation which is required
to solve state estimation problems using nonlinear models.

2. State-of-the-art Applications: Review the latest work within the areas of Simul-
taneous Localization and Mapping (SLAM), sensor calibration, visual odometry, and
other robotics and computer vision applications.

Prerequisites

Students are expected to have good knowledge on linear algebra, probability theory, calculus,
numerical computation, and basic knowledge of computer vision techniques.

Class Schedule

Two 1.5 hour long weekly meetings will be held in room E5-3101. Students in the class
will alternate in presenting formal talks on the mathematical foundation for nonlinear state
estimation and applications of said estimation to robotics, well as their own findings in
simulation using real data sets. Topics for each week of lecture will be agreed upon in the
first week of class, and the class is expected to take the standard 12 weeks.

Homework

Every few weeks, we will take one session to work through some homework questions. Each
presenter is expected to prepare one homework problem, and will present it to the class as
the end of their talk. On each homework day (see presentation schedule), the class will work
through and discuss the problems for the topics covered between the previous and current
homework days.
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Course Outline

Foundation

1. Lie Group theory for SO(3) and SE(3), parameterizations for rotations and transfor-
mations.

2. Differential calculus of 3D orientations, representing uncertainty on SO(3) and SE(3)
[1, 2].

3. Review of computer vision techniques for landmark tracking and projection [3].

4. Kinematic modeling of different vehicles [4, 5].

5. Review of probability theory, maximum likelihood estimation, maximum a posteriori
estimation, linear least-squares, properties of estimators.

6. Factor graph representation, nonlinear least-squares problems on manifolds [6, 7].

7. Batch estimation, solving sparse linear systems in information and square root form
[8, 9, 10].

8. Marginalization and sliding window estimation [11, 12, 13, 14].

Applications for Robotics and Computer Vision

9. Modeling IMU residual terms and noise characterization [15, 16, 17].

10. Modeling camera residual terms using landmark re-projection and photometric error
[3, 18].

11. Modeling Absolute and Relative pose residual terms, point-cloud scan registration
[19, 20].

12. Application: Sensor Calibration [21, 22, 23, 24].

13. Application: Landmark Based Visual-Inertial Odometry and SLAM [25, 26, 27, 28].

14. Application: Direct Visual-Inertial Odometry and SLAM [29, 18, 30, 31].

15. Application: Lidar Localization and SLAM [32, 33].
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Presentation Schedule

Date Presenter Topic Number
May 8 Steve 1
May 9 Arun Overview
May 15 Arun 2
May 16 Jason 3
May 22 Holiday (CAN)
May 23 Homework
May 29 Holiday (USA)
May 30 WISE Lab 4
June 5 Jason + Arun 5
June 6 Nav 6
June 12 Ben 7
June 13 Leo 8
June 19 Homework
June 20 Chris 9
June 26 Nav 10
June 27 Ben 11
July 3 Holiday (CAN)
July 4 Jason 12
July 10 Homework
July 11 Leo 13
July 17 Chris 14
July 18 Wise Lab 15
July 24 Homework
July 25 Extra

Grade Distribution

Presentation 1: 20%
Presentation 2: 20%
Conference/Journal Paper: 60%
Total: 100%
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dar velodyne hdl-64e calibration using pattern planes,” International Journal of Ad-
vanced Robotic Systems, vol. 8, no. 5, p. 59, 2011.

[22] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Automatic targetless ex-
trinsic calibration of a 3d lidar and camera by maximizing mutual information.,” in
AAAI, 2012.

[23] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic and extrinsic cali-
bration of a rig with multiple generic cameras and odometry,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 1793–1800, IEEE,
2013.

[24] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart, “Extending kalibr:
Calibrating the extrinsics of multiple imus and of individual axes,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pp. 4304–4311, IEEE,
2016.

[25] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar, and L. Matthies,
“Vision-aided inertial navigation for spacecraft entry, descent, and landing,” IEEE
Transactions on Robotics, vol. 25, pp. 264–280, April 2009.

[26] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-based
visual–inertial odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[27] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision-
aided inertial navigation,” in Robotics and automation, 2007 IEEE international con-
ference on, pp. 3565–3572, IEEE, 2007.

[28] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization, mapping
and sensor-to-sensor self-calibration,” The International Journal of Robotics Research,
vol. 30, no. 1, pp. 56–79, 2011.

5



[29] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “Svo: Semidi-
rect visual odometry for monocular and multicamera systems,” IEEE Transactions on
Robotics, 2016.
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