
ME 780

Lecture 2: Feedforward Neural Networks

Ali Harakeh

University of Waterloo

WAVE Lab
ali.harakeh@uwaterloo.ca

May 9, 2017

1/65

ME 780

Overview

1 Introduction

2 The Building Blocks Of Deep Learning

3 Computing The Derivative: Back-Propagation

4 Universal Approximation Properties Of Feedforward Neural
Networks

2/65

ME 780
Introduction

Section 1

Introduction

3/65

ME 780
Introduction

Deep Feedforward Networks

A Deep Feedforward Network defines a mapping
y = f (x; θ). During training, the parameters θ are learned so
that y results in the best approximation of the original
function f ∗(x).
Feedforward: Information flows from the input x through
some intermediate steps, all the way to the output y. There is
no Feedback connections.

4/65

ME 780
Introduction

Deep Feedforward Networks

Neural Networks: Neural because these models are loosely
inspired by neuroscience, Networks because these models can
be represented as a composition of many functions.
As an example, a three layer neural network is represented as
f (x) = f (3)(f (2)(f (1)(x))), where f (1) is called the first layer,
f (2) is the second layer, etc ...

5/65

ME 780
Introduction

Example:

6/65

ME 780
Introduction

More Realistic Example: Chen et al.(2017)

7/65

ME 780
Introduction

Example:

8/65

ME 780
Introduction

Different Layers of A Neural Network

x is called the input layer.
The final layer f (3) is called the output layer.
The layers in between, f (1) and f (2) are called hidden layers.

9/65

ME 780
Introduction

Example:

10/65

ME 780
Introduction

Depth and Width

The length of the chain of functions in a neural network is
called its depth.
The dimensionality of the hidden layers of a neural network is
called its width .

11/65

ME 780
Introduction

Example:

12/65

ME 780
Introduction

The Power of Hidden Layers

During neural network training, we drive f (x; θ) to match
f ∗(x).
The training data provides us with noisy approximations of
f ∗(x), each example x is accompanied by a value or label
y ≈ f ∗(x).
Only the output of the neural network is specified for each
example. The training data does not specify what the network
should do with its hidden layers, the network itself must
decide how to modify these layers to best implement an
approximation of f ∗(x).
This is referred to as representation learning.

13/65

ME 780
Introduction

Representation Learning

Consider the linear model: y = WT x + b.
What are the advantages of such a model ?
What are the disadvantages of such a model ?

14/65

ME 780
Introduction

Representation Learning

To extend linear models to represent non-linear functions of x,
the linear model is usually applied to a transformed input φ(x).
How should we choose φ(.) ?

15/65

ME 780
Introduction

Representation Learning

1. Use a very generic φ(.), such as the features implicitly used
by the RBF kernel in kernel machines.
2. Manually engineer φ(.).
3. Learn φ(.) from a broad class of functions.

16/65

ME 780
Introduction

Representation Learning

The theme of Representation Learning extends beyond
feedforward networks described in this lecture.
It is a recurring theme of deep learning that applies to all of
the kinds of models described throughout this course.

17/65

ME 780
The Building Blocks Of Deep Learning

Section 2

The Building Blocks Of Deep Learning

18/65

ME 780
The Building Blocks Of Deep Learning

Designing Deep Learning Algorithms

Not much different than regular machine learning algorithms.
Specify and optimization procedure, cost function, and model
family.
Optimization procedures used for deep learning will have a
separate discussion later on throughout the course.
However, keep in mind the Gradient portion of Gradient
Based Learning !
For now, we are interested in the design considerations
specific to the cost function and the model family.

19/65

ME 780
The Building Blocks Of Deep Learning

Designing Deep Learning Algorithms

20/65

ME 780
The Building Blocks Of Deep Learning

The Cost Function

The cost function is a measure of how well our algorithm
performs.
Training is performed through minimizing the cost function.
As with traditional machine learning algorithms, most neural
networks are trained using maximum likelihood. The Cost
Function in that case is:

J(θ) = −Ex,y∼p̂data log(pmodel (y|x))

The above cost is referred to as the cross entropy between
between the training data and the model distribution.

21/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer

The choice of cost function is tightly coupled with the choice
of output unit.
This is because the form of the cross-entropy function
depends on how the output is represented.
Let h(x; θ) be the output of the final hidden layer.
Let ŷ be the output of the whole model, or f (x; θ).

22/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer: Linear Units

A simple kind of output unit is one based on an affine
transformation with no non-linearity:

ŷ = WT h + b

Often used to produce the mean of a conditional Gaussian
distribution, p(y|x) = N (y; ŷ, I)
Using maximum likelihood estimation, the cost function will
be the Mean Square Error:

J(θ) = 1
2Ex,y∼p̂data ||y− ŷ||22 + const

23/65

ME 780
The Building Blocks Of Deep Learning

Example: Classification With Linear Output Units, and
Multiclass SVM Cost Function

24/65

ME 780
The Building Blocks Of Deep Learning

Example: Classification With Linear Output Units, and
Multiclass SVM Cost Function

Define the Multi-Class SVM Loss also called the Hinge
Loss as:

J(θ) =
∑

i 6=ytrue

max(0, f (x; θ)i − f (x; θ)ytrue + ∆)

From the previous example, Multi-Class SVM Loss is:

J(θ) = max(0,−7− 13 + 1) + max(0, 11− 13 + 1) = 0

Other formulations exist, this one follows the Weston and
Watkins (1999) version.

25/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer: Softmax Units

Softmax functions are most often used as the output of a
classifier, to represent the probability distribution over K
different classes.
Softmax function on a vector z is applied element wise as:

p(yi ; z) = softmax(z)i = ezi∑
j

ezj
.

z is usually the output of a linear unit, z = WT h + b.

26/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer: Softmax Units

Why is it called softmax ?

27/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer: Softmax Units

The cost function is then derived using maximum likelihood:

J(θ) = log p(yi ; z) = log softmax(z)i = zi − log
∑

j
ezj

The first term zi always has a direct contribution to the cost
function, thus learning can proceed even if the second term
becomes very small.
When maximizing the log-likelihood, the first term encourages
zi to be pushed up, while the second term encourages all of z
to be pushed down.

28/65

ME 780
The Building Blocks Of Deep Learning

The Output Layer: Other Output Types

The linear and softmax output units described above are the
most common output layers.
Sigmoid units are sometimes used for binary classification.
Gaussian mixture models are employed in mixture density
networks. Their usage is primarily multimodal regression.
However, it has been reported that gradient-based
optimization of conditional Gaussian mixtures on the output of
neural networks can be unreliable due to numerical instability.

29/65

ME 780
The Building Blocks Of Deep Learning

The Hidden Units:

So far, we have focused on design choices for neural networks
that are common to most parametric models.
Hidden units are what makes deep learning unique.
Note that these slides are in no way a comprehensive list of
hidden units.
The design of hidden units is an extremely active area of
research and does not yet have many definitive guiding
theoretical principles.

30/65

ME 780
The Building Blocks Of Deep Learning

The Hidden Units:

So far, we have focused on design choices for neural networks
that are common to most parametric models.
Hidden units are what makes deep learning unique.
Note that these slides are in no way a comprehensive list of
hidden units.
The design of hidden units is an extremely active area of
research and does not yet have many definitive guiding
theoretical principles.

31/65

ME 780
The Building Blocks Of Deep Learning

The Hidden Units:

Unless otherwise stated, all hidden units discussed in these
slides start off with a linear transformation of the input:

z = WT h + b

The linear transformation is followed by an element wise,
nonlinear function g(z) . This function is usually called the
activation function.

32/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: ReLU

The ReLU hidden unit are the default choice of activation
function for Feedforward Neural Networks.
The ReLU hidden unit use the function max(0, z) as its
activation function.
ReLUs are easy to optimize because they are very similar to
linear units.
Derivative through ReLU remain large whenever the unit is
active.
The derivative is also consistent, and the gradient direction is
far more useful for learning than it would be with activation
functions that introduce second order effects.

33/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Unit: ReLU

34/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Unit: ReLU

One drawback of ReLUs is that they cannot learn via gradient
based methods on examples for which their activation
function is zero.
However, this drawback is not as sever as what we refer to as
the ”dead” ReLU phenomenon.

35/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: ReLU

A large gradient flowing through a ReLU neuron could cause
the weights to update in such a way that the neuron will
never activate on any datapoint again.
If this happens, then the gradient flowing through the unit will
forever be zero from that point on. That is, the ReLU units
can irreversibly die during training since they can get knocked
off the data manifold.

36/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Unit: Leaky ReLU

The Leaky ReLu tries to remedy the ”dead” ReLU problem
by allowing learning to proceed even with z ≤ 0.
This is done through extending the activation function to be:

g(z) = max(0, z) + αmin(0, z)

α is usually set to 0.1.
Parametric ReLu uses the same concept as the Leaky Relu,
but treats α as a learnable parameter.

37/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: Leaky ReLU

38/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: Maxout

The Maxout units computes the the function:

g(h) = max
k

(WT
k h + bk)

Maxout units can be thought of as a generalization to the
ReLU units.
Maxout units can learn a piecewise linear, convex function
with up to k pieces. This can be thought of as learning the
activation function itself !
With large enough k, Maxout units can learn to approximate
any convex function up to an arbitrary fidelity.

39/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: Maxout (Goodfellow et al.
2014)

The Maxout units computes the the function:

g(h) = max
k

(WT
k h + bk)

Maxout units can be thought of as a generalization to the
ReLU units.
Maxout units can learn a piecewise linear, convex function
with up to k pieces. This can be thought of as learning the
activation function itself !
With large enough k, Maxout units can learn to approximate
any convex function up to an arbitrary fidelity.

40/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: Maxout

The Maxout units enjoy the benefetis of ReLUs with out
having any of their drawbacks.
Because each unit is driven by multiple filters, Maxout units
have some redundancy that helps them to resist a
phenomenon called catastrophic forgetting, in which neural
networks forget how to perform tasks that they were trained
on in the past.
However, each Maxout unit is now parametrized by k weight
vectors instead of just one,so Maxout units typically need
more regularization than ReLUs.

41/65

ME 780
The Building Blocks Of Deep Learning

Sigmoidal Units

Prior to the introduction of ReLUs, most neural networks used
the sigmoid activation function:

σ(z) = 1
1 + e−z

The sigmoid activation function ”squashes” its input to a
value between 0 and 1.
The sigmoid function has seen frequent use historically since it
has a nice interpretation as the firing rate of a neuron: from
not firing at all (0) to fully-saturated firing at an assumed
maximum frequency (1).

42/65

ME 780
The Building Blocks Of Deep Learning

Sigmoidal Units

43/65

ME 780
The Building Blocks Of Deep Learning

Sigmoidal Units

Th sigmoidal units have been abandoned in Feedforward
Neural Networks for the following reasons:

Sigmoidal units saturate and kill gradients. When the value of
z is at the 0 tail of the sigmoid function, the local gradient is
very small. This will result in the sigmoid ”Killing” the
gradient and almost no signal will flow through the neuron to
its weights and recursively to its data. If the value of z is on
the 1 tail (when the initial weights are very large for example),
then the gradient is also almost zero and the network will
barely learn.
The outputs of Sigmoidal units are not zero-centered. This is
less sever than gradient killing, but also affects the gradient
decent dynamics.

44/65

ME 780
The Building Blocks Of Deep Learning

Tanh Units

Tanh is one other non-linearity that was used prior to ReLUs:

g(z) = tanh(z) = 2σ(2z)− 1

The Tanh unit attempts to fix the zero-centering problem of
the sigmoidal unit. However, the tanh function also has the
sigmoid function’s same gradient killing characteristics.
Tanh units is almost always favoured over the sigmoidal unit.

45/65

ME 780
The Building Blocks Of Deep Learning

The Rectified Linear Units: Leaky ReLU

46/65

ME 780
The Building Blocks Of Deep Learning

Sigmoidal and Tanh Units

Recurrent networks, many probabilistic models, and some
autoencoders have additional requirements that rule out the
use of piecewise linear activation functions and make
sigmoidal and tanh units more appealing despite the
drawbacks of saturation.

47/65

ME 780
Computing The Derivative: Back-Propagation

Section 3

Computing The Derivative: Back-Propagation

48/65

ME 780
Computing The Derivative: Back-Propagation

Forward Propagation And Back Propagation

When we use the a feedforward neural network to accept an
input x and produce an output ŷ, information flows from the
input to the cost function J(θ).
During training, we need to update the parameters according
to the cost function. Back Propagation or Backprop for
short, allows us to propagate information from the cost
function through the parameters.

49/65

ME 780
Computing The Derivative: Back-Propagation

Forward Propagation And Back Propagation

50/65

ME 780
Computing The Derivative: Back-Propagation

Backprop

Backprop is not the whole learning algorithm, it is merely a
method to compute the derivatives. It can be used to
compute the derivative of any function, and is not limited to
deep neural networks training.
Backprop relies on applying the chain rule recursively to
obtain ∇J(θ)
Modifying the parameters is done by SGD or other
optimization algorithms.

51/65

ME 780
Computing The Derivative: Back-Propagation

Computational Graph

Backprop can be easily understood when applied on
computational graphs.
In these slides, nodes of the graph indicate operations.

52/65

ME 780
Computing The Derivative: Back-Propagation

Example: Sigmoid Function

53/65

ME 780
Computing The Derivative: Back-Propagation

Example: Sigmoid Function

Red indicates the forward pass.
Green indicates the backward pass.

54/65

ME 780
Computing The Derivative: Back-Propagation

Example: Sigmoid Function

If we can derive a complex function’s gradient, we can assume
it is a single operation in our computational graph.
The derivative of the sigmoid function can be expressed as:

dσ(z)
dz = σ(x)(1− σ(z))

55/65

ME 780
Computing The Derivative: Back-Propagation

Example: Multivariate Function

The following function is completely irrelevant to deep
learning, it will only be used in an example of Backprop.
Let us formulate the backward pass of the function:

f (x , y) = x + σ(y)
σ(x) + (x + y)2

56/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Section 4

Universal Approximation Properties Of
Feedforward Neural Networks

57/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

Feedforward networks can be seen as efficient nonlinear
function approximators based on using gradient descent to
minimize the error in a function approximation. .
At first glance, we might presume that learning a nonlinear
function requires designing a specialized model family for the
kind of nonlinearity we want to learn.
Fortunately for us, feedforward networks with hidden layers
provide a universal approximation framework.

58/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

The Universal Approximation Theorem (Hornik et al.
1989, Cybenko, 1989) states that a feedforward neural
network with a linear output layer and at least one hidden
layer with a squashing activation function (sigmoid or tanh
for example) can approximate any Borel measurable function
from one finite dimensional space to the other, with any
desired non-zero amount of error, provided that the network
has enough hidden units (width).

59/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

The derivatives of the feedforward network can also
approximate the derivatives of the function arbitrarily well
(Hornik et al. 1990).
Borel measurable: For the scope of this course, any
continuous function on a closed and bounded set in Rn is
borel measurable, and thus can be approximated by a
feedforward neural network.
An extension of this theorem has been provided for the case of
ReLU activation functions (Leshno et al., 1993).

60/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

Even though the theoretical implications of this theorem are
”nice”, a feedforward network may fail to learn a function
even though it can represent it.
Why ?

61/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

Optimization procedures used to train neural networks provide
no guarantees on finding the correct parameters corresponding
to a desired function. (No global convergence guarantees)
The No Free Lunch theorem shows that there is no
universally superior machine learning algorithm. Feedforward
networks provide a universal system for representing functions,
in the sense that, given a function, there exists a feedforward
network that approximates the function. There is no universal
procedure for examining a training set of specific examples
and choosing a function that will generalize to points not in
the training set.

62/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Universal Approximation Properties Of Feedforward
Neural Networks

The universal approximation theorem says that there exists a
network large enough to achieve any degree of accuracy we
desire, but the theorem does not say how large this network
will be. The single hidden layer might be infeasably large.
Furthermore, it may fail to generalize well due to overfitting.
In many circumstances, using deeper models can reduce the
number of units in each hidden layer that are required to
represent the desired function and can reduce the amount of
generalization error.

63/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Conclusion

In general, the standard choice to increase the capacity of
feedforward networks is to go deeper, rather than wider.
Choosing a deep model encodes a very general belief that the
function we want to learn should involve composition of
several simpler functions.
The above prior helps us overcome the curse of
dimensionality !

64/65

ME 780
Universal Approximation Properties Of Feedforward Neural Networks

Conclusion

Next Lecture, Regularization.

65/65

	Introduction
	The Building Blocks Of Deep Learning
	Computing The Derivative: Back-Propagation
	Universal Approximation Properties Of Feedforward Neural Networks

