Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images

Shuran Song ¹ Jianxiong Xiaor¹

¹Princeton University

Presented by : Melissa Mozifian May 17, 2017 Overview

1 3D Object Detection

- 2 Network Architecture
- 3 Training

→ 張▶ ★ 唐▶

- ∢ 🗗 ト

- Deep ConvNets have revolutionized 2D object detection
 - RCNN, Fast RCNN, Faster RCNN are three iterations of the most successful state of the art object detectors
- More research focus on 3D object detection

- SUN RGB-D: A RGB-D Scene Understanding Benchmark
- NYU Depth Dataset
- Evaluation:
 - Average Precision (AP) per class
 - mean Average Precision

글 🕨 글

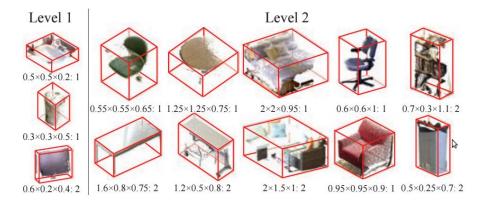
< 一型

- 3D formulation to learn object proposals and classifiers using 3D convolutional neural networks (ConvNets)
- Challenges:
 - Need to come up with a way to encode 3D representation
 - 3D volumetric representation requires more memory and computation

• Encode the geometric shapes in 3D while preserving spatial locality

- Using directional Truncated Signed Distance Function (TSDF)
- The resolution is 208x208x100 for the Region Proposal Network, and 30x30x30 for the Object Recognition Network

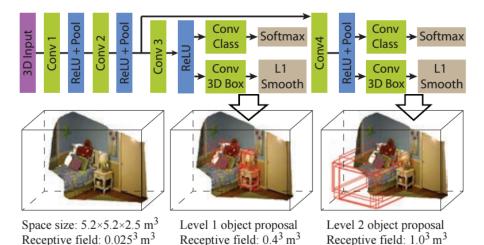
- Extra dimension, increases the possible location for an object by 30 times (45 thousand windows per image in 2D vs 1.4 million in 3D)
- Variation in pixel areas of similar objects with different 3D physical sizes, e.g. bed and a chair



3

◆ロト ◆聞ト ◆限ト ◆居ト

3D Amodal Region Proposal Network



Shuran Song , Jianxiong Xiaor Deep Sliding Shapes for Amodal 3D Object D

- ∢ 🗗 ▶

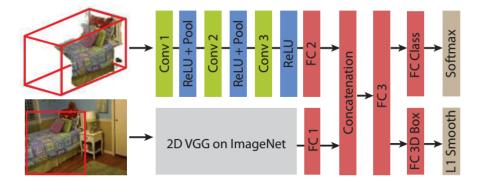
$L(\boldsymbol{p},\boldsymbol{p}^*,\mathbf{t},\mathbf{t}^*) = L_{\textit{cls}}(\boldsymbol{p},\boldsymbol{p}^*) + \lambda \boldsymbol{p}^* L_{\textit{reg}}(\mathbf{t},\mathbf{t}^*)$

- First term is objectness score
- Second term is for the box regression
- p is the predicted probability of anchor being an object
- p* is the ground truth
- L_{cls} is log loss over two categories (object vs non-object)
- L_{reg} is smooth L₁ loss

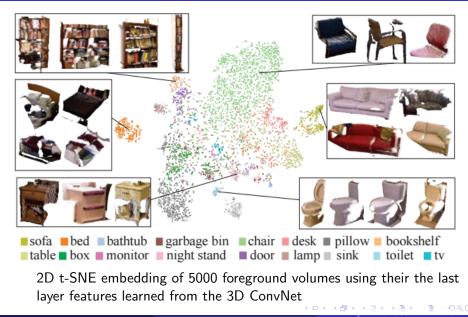
- Adopt 3D Non-Maximum Suppression (NMS) to remove redundant proposals
- Thresholding IOU in 3D to pick the top 2000 boxes
- Key factor to speed up the algorithm

- ∢ ⋽ →

Joint Object Recognition Network



3D ConvNet Features



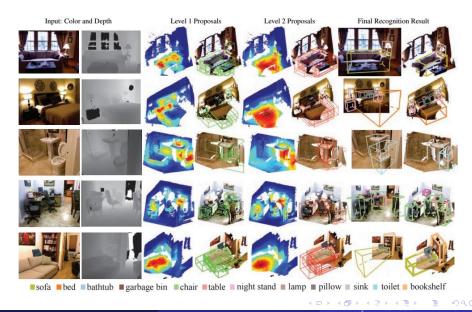
- Project the 3D points inside the proposal box to 2D image plane
- VGGnet pre-trained on ImageNet to extract color features
- Region-of-Interest Pooling Layer from Fast RCNN

$$L(\boldsymbol{p},\boldsymbol{p}^{*},\mathbf{t},\mathbf{t}^{*})=L_{\textit{cls}}(\boldsymbol{p},\boldsymbol{p}^{*})+\lambda^{'}[\boldsymbol{p}^{*}>0]L_{\textit{reg}}(\mathbf{t},\mathbf{t}^{*})$$

• *p* is the predicted probability over 20 categories (negative non-objects is labeled as class 0)

.∋...>

Results



TO 3D 3D Selective Search RPN Single RPN Multi		4	ب ھد	4	¥	₽) أ		[Ŵ	ŧ	Ţ	Ĥ		۶		Т	ă				#Box
- All Anchors	2D To 3D	41.7	53.5	37.9	22.0	26.9	46.2	42.2	11.8	47.3	33.9	41.8	12.5	45.8	20.7	49.4	55.8	54.1	15.2	50.0	34.4	0.210	2000
3I	D Selective Search	79.2	80.6	74.7	66.0	66.5	92.3	80.9	53.9	89.1	89.8	83.6	45.8	85.4	75.9	83.1	85.5	80.9	69.7	83.3	74.2	0.409	2000
2	RPN Single	87.5	98.7	70.1	15.6	95.0	100.0	93.0	20.6	94.5	49.2	49.1	12.5	100.0	34.2	81.8	94.9	93.3	57.6	96.7	75.2	0.425	2000
- \ \	RPN Multi	100.0	98.7	73.6	42.6	94.7	100.0	92.5	21.6	96.4	78.0	69.1	37.5	100.0	75.2	97.4	97.1	96.4	66.7	100.0	84.4	0.460	2000
	RPN Multi Color	100.0	98.1	72.4	42.6	95.0	100.0	93.0	19.6	96.4	79.7	76.4	37.5	100.0	79.0	97.4	97.1	95.4	57.6	100.0	84.9	0.461	2000
	All Anchors	100.0	98.7	75.9	50.4	97.2	100.0	97.0	45.1	100.0	94.9	96.4	83.3	100.0	91.2	100.0	97.8	96.9	84.8	100.0	91.0	0.511	107674

Table 1. Evaluation for Amodal 3D Object Proposal. [All Anchors] shows the performance upper bound when using all anchors.

poposal	algorithm	#	 i	-	₽	٢ģ			Ŵ	ŧ	Ĥ		þ		Т	Ļ	¥	[_	ă	mAP
3D SS	dxdydz no bbreg	43.3	55.0	16.2	23.1	3.4	10.4	17.1	30.7	10.9	35.4	20.3	41.2	47.2	25.2	43.9	1.9	1.6	0.1	9.9	23.0
	dxdydz	52.1	60.5	19.0	30.9	2.2	15.4	23.1	36.4	19.7	36.2	18.9	52.5	53.7	32.7	56.9	1.9	0.5	0.3	8.1	27.4
	dxdydz no bbreg	51.4	74.8	7.1	51.5	15.5	22.8	24.9	11.4	12.5	39.6	15.4	43.4	58.0	40.7	61.6	0.2	0.0	1.5	2.8	28.2
	dxdydz no size	59.9	78.9	12.0	51.5	15.6	24.6	27.7	12.5	18.6	42.3	15.1	59.4	59.6	44.7	62.5	0.3	0.0	1.1	12.9	31.5
RPN	dxdydz	59.0	80.7	12.0	59.3	15.7	25.5	28.6	12.6	18.6	42.5	15.3	59.5	59.9	45.3	64.8	0.3	0.0	1.4	13.0	32.3
	tsdf dis	61.2	78.6	10.3	61.1	2.7	23.8	21.1	25.9	12.1	34.8	13.9	49.5	61.2	45.6	70.8	0.3	0.0	0.1	1.7	30.2
	dxdydz+rgb	58.3	79.3	9.9	57.2	8.3	27.0	22.7	4.8	18.8	46.5	14.4	51.6	56.7	45.3	65.1	0.2	0.0	4.2	0.9	30.1
	proj dxdydz+img		81.4								40.8						0.5	0.2	0.3	1.8	32.2
	dxdydz+img+hha	55.9	83.0	18.8	63.0	17.0	33.4	43.0	33.8	16.5	54.7	22.6	53.5	58.0	49.7	75.0	2.6	0.0	1.6	6.2	36.2
	dxdydz+img	62.8	82.5	20.1	60.1	11.9	29.2	38.6	31.4	23.7	49.6	21.9	58.5	60.3	49.7	76.1	4.2	0.0	0.5	9.7	36.4

Table 2. Control Experiments on NYUv2 Test Set. Not working: box (too much variance), door (planar), monitor and tv (no depth).

・ロト ・聞ト ・ほト ・ ほト

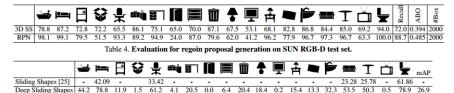


Table 5. Evaluation for 3D amodal object detection on SUN RGB-D test set.

・ロト ・聞ト ・ほト ・ ほと

bookshelf

dresser

sofa

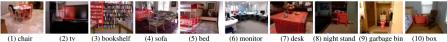
box

lamp

door

tv

Misses



(1) chair

(3) bookshelf

(5) bed

(6) monitor

(7) desk

(8) night stand (9) garbage bin (10) box

- 速▶ | ★ 速 ▶

False Positives

- Great potential of learning 3D shape representation
- Main contribution : Encoding 3D Representation to preseve most important features in both 3D and 2D
- Limitations/Future work
 - Detection still limited by the two level sizes proposed
 - Improving detection of smaller objects
 - Improve speed : RPN takes 5.62s and ORN takes 13.93s per image during testing