Review of Computer Vision Techniques

Jason Rebello 16/05/2017

Part I : What is Computer Vision and how is an image formed

Part || : Feature Detection and Feature Matching

Part ||| : Feature Tracking and Prediction

Part IV : Applications (Bag Of Words)

What is Computer Vision and How is an Image Formed

Introduction |

Image Processing: Image Manipulation (Motion compensation, Filtering)

Filtered

Noise Removal

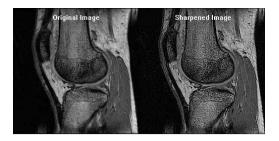


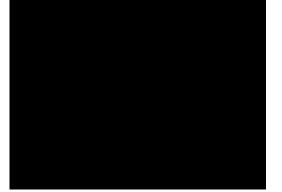
Image Sharpening

Computer Vision: Scene Interpretation

Semantic Segmentation

3D Reconstruction

Introduction | Computer Vision systems



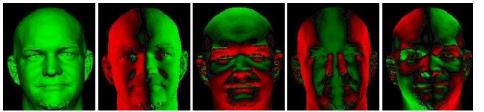
Autonomous driving Source: Tesla

Structure from Motion Source: DrCalleOlsson

Optical Character Recognition

Surveillance Source: Ben Benfold & Ian Reid

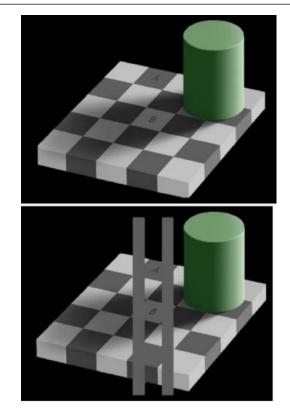
Introduction | Computer Vision is hard



Shadow Effects

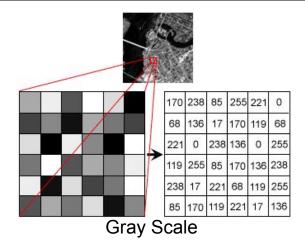
Dani	el Ke	rsten	
Davi Pascal		Knill 1assi	
Isabel			

Motion from shadows Source: Dan Kersten

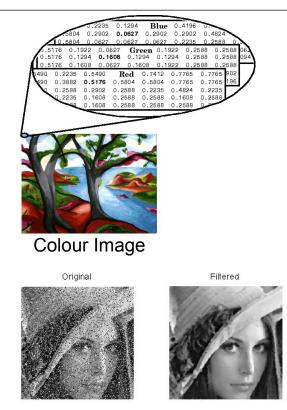


Local vs Global Perception

Introduction | Image Representations



- Images are thought of Functions
- Images: Sample 2D space Quantize Intensity
- Noise is another function combined with original function



Salt and Pepper Noise

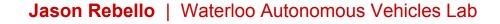
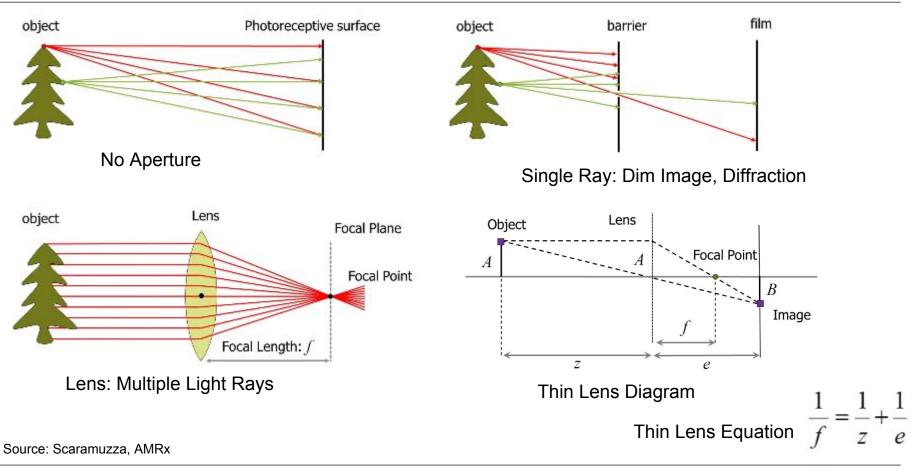


Image Formation | Cameras and Lenses



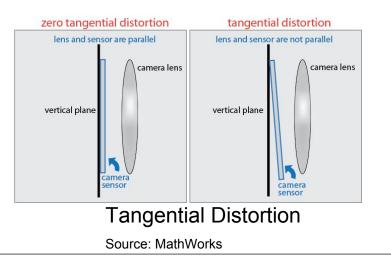
Jason Rebello | Waterloo Autonomous Vehicles Lab

WATERLOO

Image Formation | Distortions

No distortion

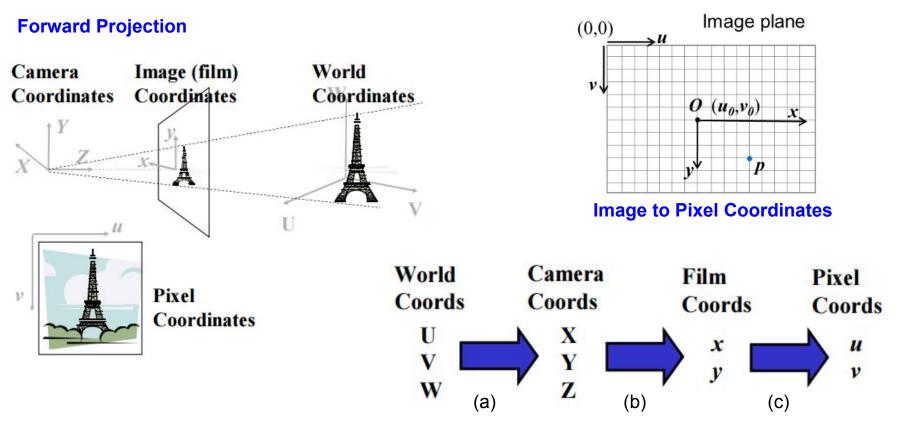
Barrel distortion



Pincushion

Radial Distortion

Source: Scaramuzza



Source: Robert Collins,

-CSE486

- (a) Extrinsic Transformation (Rotation + Translation)
 - Transforms points from World to Camera coordinate Frame
 - Homogeneous coordinates allow for easy matrix multiplication

(b),(c) Perspective Projection

X Y V Z W

Perspective Projection Eqns

$$x = f \frac{X}{Z}$$

$$y = f \frac{Y}{Z}$$
derived via similar
triangles rule
$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} f/s_x & 0 & o_x & 0 \\ 0 & f/s_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$u = \frac{x'}{z'}$$

$$v = \frac{y'}{z'}$$
Camera Coordinates
$$V = \frac{y'}{z'}$$
Projective Projection Eqns
$$u = \frac{x}{z'}$$
Projective Projection Eqns
$$u = \frac{x}{z'}$$

$$v = \frac{y'}{z'}$$
Projective Projection Eqns
$$V = \frac{y'}{z'}$$
Projective Projective Projection Eqns
$$V = \frac{y'}{z'}$$
Projective Projective Projection Eqns
$$V = \frac{y'}{z'}$$
Projective Proje

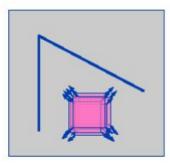
End of Part I |

Feature Detection and Feature Matching

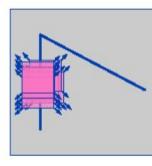
Feature Detectors |

Need to find reliably detectable and discriminable locations in images

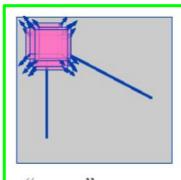
- Repeatability (Across images)
- Precise (Location)
- Saliency (Distinctive description)
- Compactness (Few features)
- Locality (Size of descriptor region)



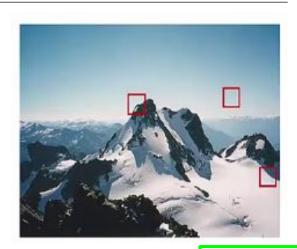
"flat" region: no change in all directions

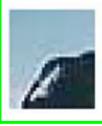


"edge": no change along the edge direction



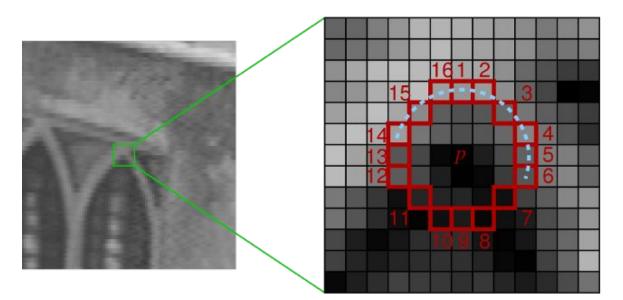
"corner": significant change in all directions





Source: Mubarak Shah

- Let 'P' be point of interest
- Select threshold 't'
- Consider 16 pixels around Point 'P'
- 'P' is a corner if 'n' consecutive pixels with corresponding intensity greater or less than intensity of 'P' exist
- Shi-Tomasi, GFTT, BRIEF, SURF, SIFT



Features from Accelerated Segment Test

Source: OpenCV

- Image Convolution using Sobel Operator

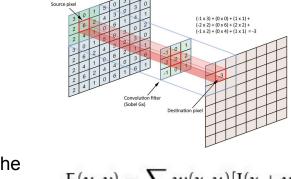
- Consider a grayscale image I. Calculate the variation in the gradient by sweeping a window in x and y direction
- Approximation in matrix form
- Determine Score for each window
- Score using Eigen values $det(M) = \lambda_1 \lambda_2$ $trace(M) = \lambda_1 + \lambda_2$

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \left(\sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$R = det(M) - k(trace(M))^2$$

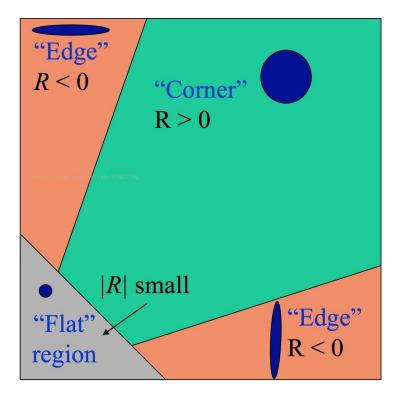
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

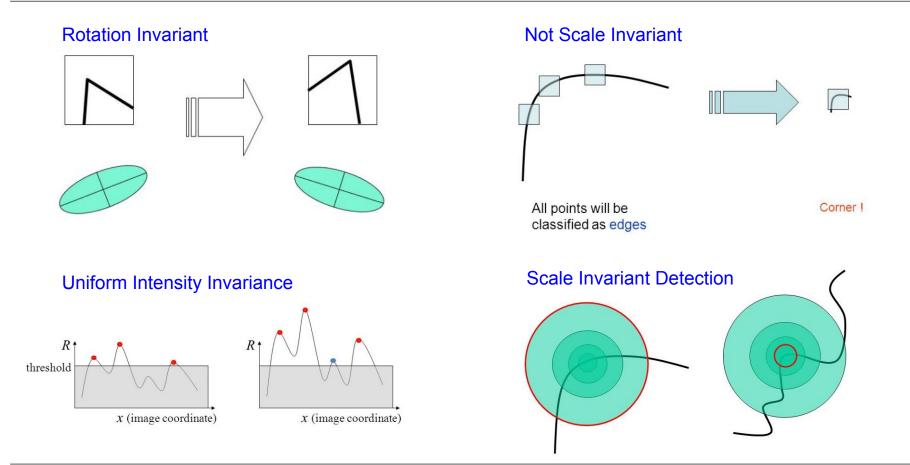


Feature Detectors | Harris Score Value

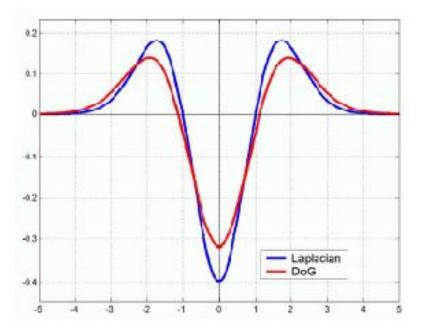
$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

α: constant (0.04 to 0.06)

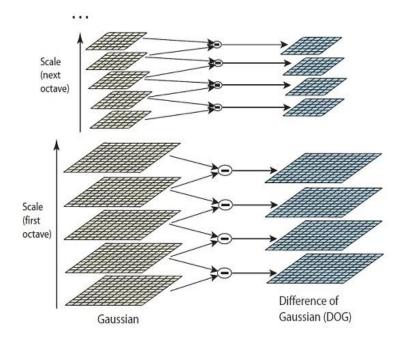




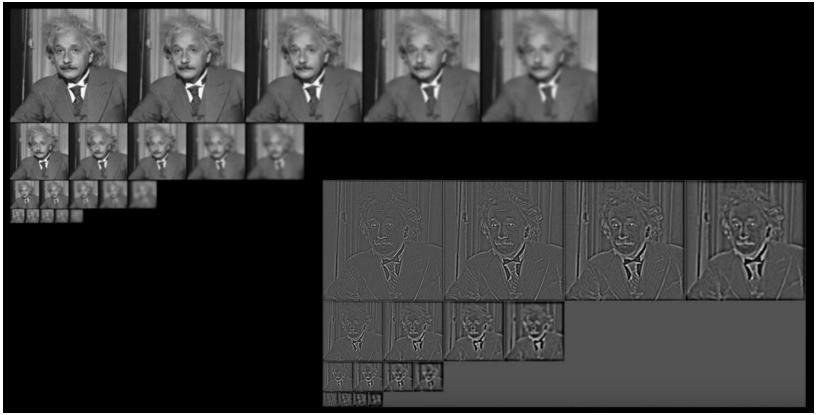
Laplacian of Gaussian vs Difference of Gaussian



Scale Space Generation



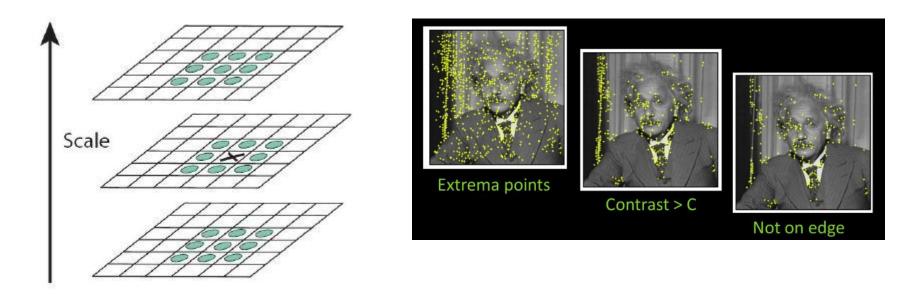
Extrema at different scales



Source: Aaron Bobik

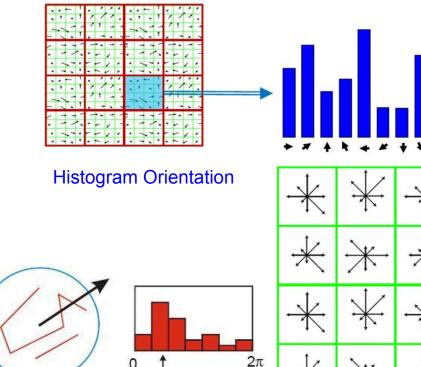
Find Maxima in Scale Space

SIFT Feature Points



Source: Aaron Bobik

- Find Gradients of image patch
- Get Dominant Orientation using 36 bins and applying gaussian weighting.
- Highest Peak is dominant orientation
- Take 16x16 region around Keypoint and rotate to dominant orientation
- Divide into 16 sub-blocks of 4x4 and create orientation histogram with 8 bins
- Stack histogram to get 128 Dimensional Descriptor

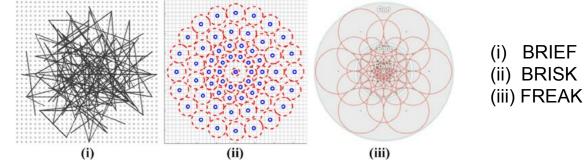


Dominant Orientation

128 Dimensional Descriptor

Feature Descriptors | Descriptor Comparison

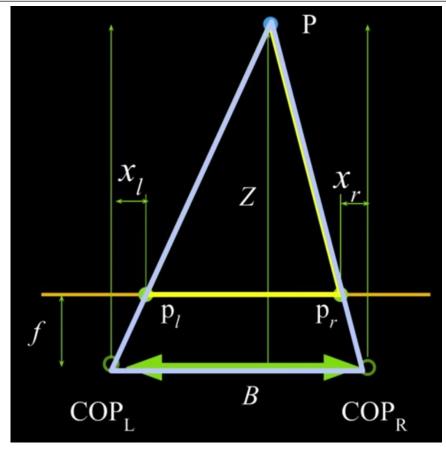
	Sampling pattern	Orientation calculation	Sampling pairs
BRIEF	None.	None.	Random.
ORB	None.	Moments.	Learned pairs.
BRISK	Concentric circles with more points on outer rings.	Comparing gradients of long pairs.	Using only short pairs.
FREAK	Overlapping Concentric circles with more points on inner rings.	Comparing gradients of preselected 45 pairs.	Learned pairs.



Source: Gil

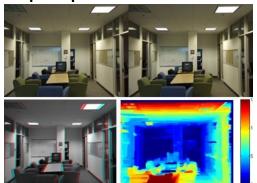
Feature Tracking and Prediction

Stereo Vision |

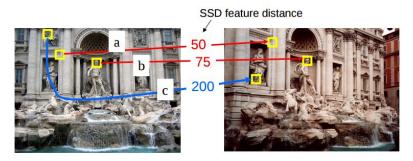


$$\frac{B - x_l + x_r}{Z - f} = \frac{B}{Z}$$
$$Z = f \frac{B}{x_l - x_r}$$

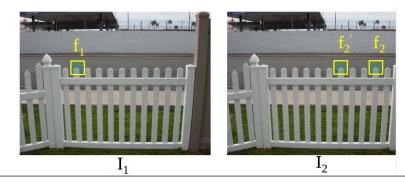
$$X_1 - X_r = disparity$$



- Sum of Square differences between two descriptors f_1 and f_2
- What value of threshold to use ?



- How to resolve ambiguous matches ? Ratio distance = $SSD(f_1, f_2) / SSD(f_1, f_2)$
- Ambiguous matches will have ratio close to 1



Feature Tracking | Optical Flow

- Determine apparent motion of object in consecutive frames
- Given pixel in I(x,y,t), find nearby pixels of same intensity in I(x,y,t+1)

Brightness Constancy Constraint:

$$0 = I(x + u, y + v, t + 1) - I(x, y, t)$$

Small Motion Constraint:

$$I(x+u, y+v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$(u,v)$$

$$I(x,y,t)$$

$$I(x,y,t+1)$$

Source: Aaron Bobik

Feature Tracking | KLT

- $I_x I_y$ are space image derivatives
- I, is time image derivative
- u v are unknowns

$$I_x u + I_y v + I_t = 0$$

Optical Flow Equation

- 5x5 window gives 25 equations per pixel.

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$

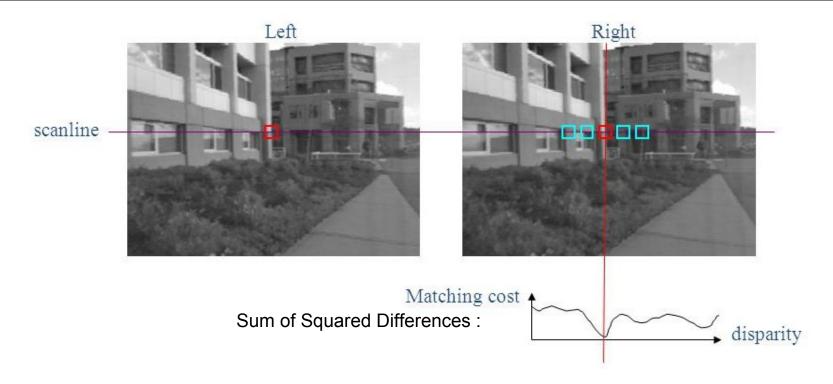
$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

Solution: $\mathbf{d} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$

Source: Aaron Bobik

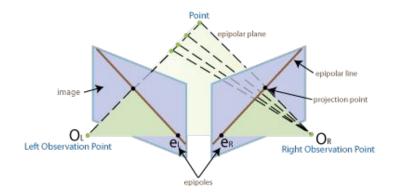
Feature Prediction | Parallel image planes

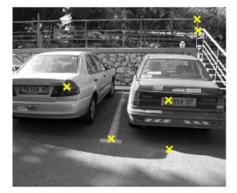


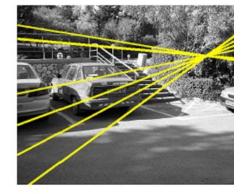
What if the image planes weren't parallel?

Feature Prediction | Epipolar Geometry

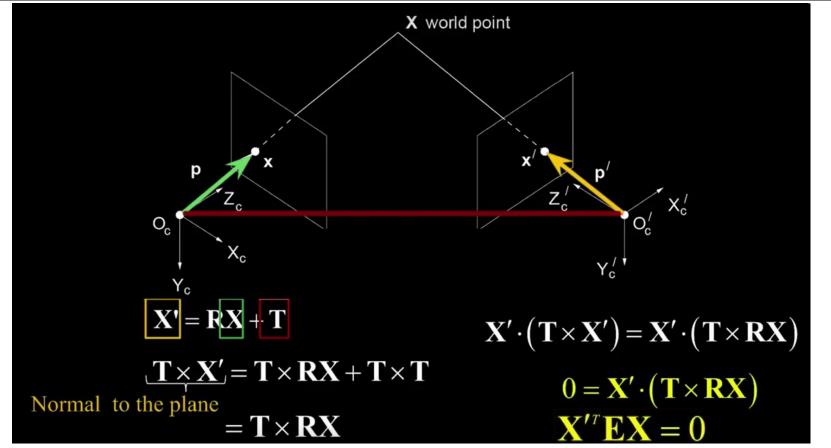
- Lines project to lines in the image
- All epipolar lines intersect at epipole
- One dimensional search for correspondence
- Parallel image planes have epipole at infinity







Epipolar Geometry | Essential Matrix



Source: Aaron Bobik

Epipolar Geometry | Fundamental matrix

$$\begin{pmatrix} \mathbf{K}_{int,right}^{-1} \mathbf{p}_{im,right} \end{pmatrix}^{\mathrm{T}} \mathbf{E} \begin{pmatrix} \mathbf{K}_{int,left}^{-1} \mathbf{p}_{im,left} \end{pmatrix} = 0$$

$$\mathbf{p}_{im,right}^{\mathrm{T}} \begin{pmatrix} \mathbf{K}_{int,right}^{-1} \end{pmatrix}^{T} \mathbf{E} \mathbf{K}_{int,left}^{-1} \end{pmatrix} \mathbf{p}_{im,left} = 0$$
"Fundamental matrix": **F**

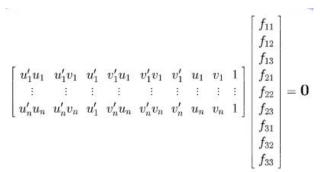
$$\mathbf{p}_{im,right}^{\mathrm{T}} \mathbf{F} \mathbf{p}_{im,left} = \mathbf{0} \text{ or } \mathbf{p}^{T} \mathbf{F} \mathbf{p}' = 0$$

$$\mathbf{l} = \mathbf{F} \mathbf{p}' \text{ is the epipolar line in the p image associated with p'$$

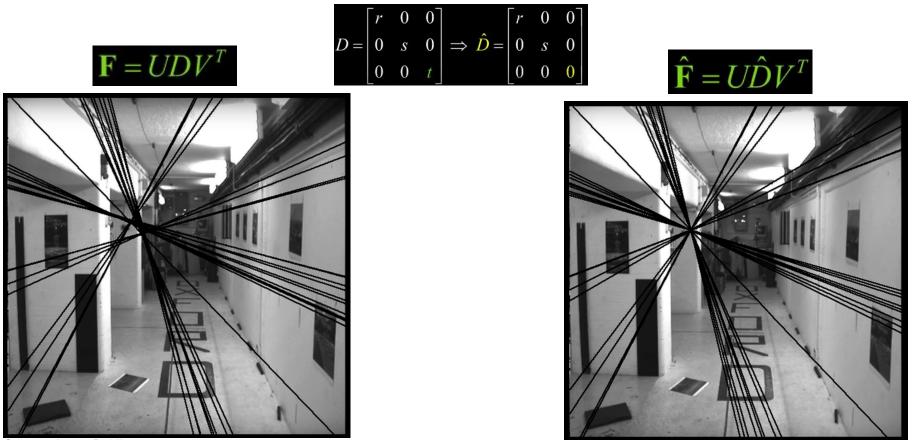
Source: Aaron Bobik

Jason Rebello | Waterloo Autonomous Vehicles Lab

Calculate F from minimum 8 correspondences

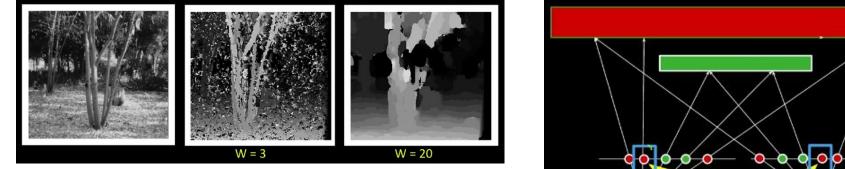


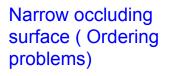
Epipolar Geometry | Fundamental Matrix

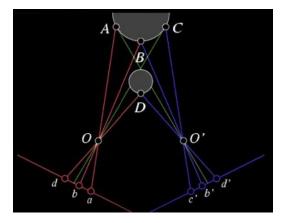


Source: Aaron Bobik

Window Size







Occluded pixels

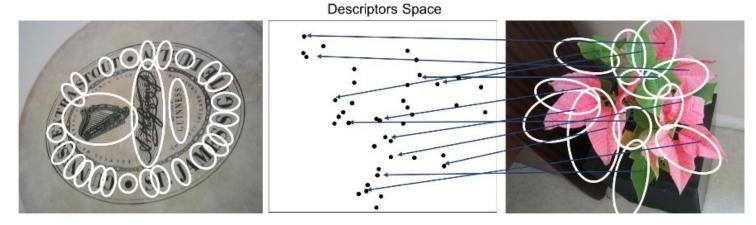
Source: Aaron Bobik

Bag of Words

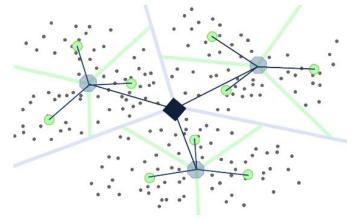
Place Recognition | Overview

Source: Margarita Chli

Extract Features using SIFT descriptor

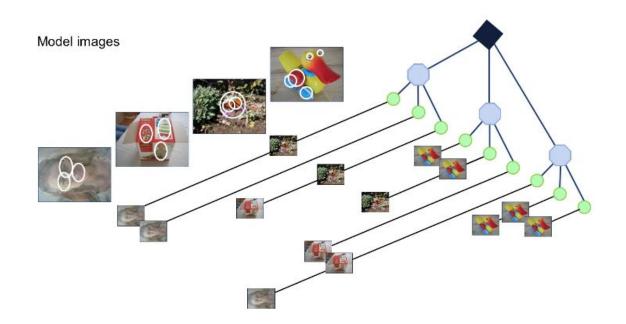


Hierarchical Clustering to get Visual Words



Source: Margarita Chli

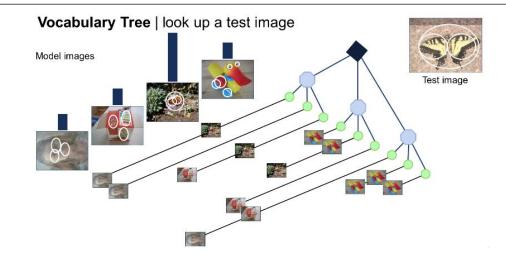
- Pass each image through Vocabulary Tree
- Get Visual words based on features of image
- Use inverted file index (Visual word to image mapping) for quick test time



Source: Margarita Chli

Place Recognition | Test Image

- Extract Features from Test Image
- Find corresponding Visual Words
- Determine closest match



- term frequency: frequency of word w_i in image $j: tf_{ij} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$
- inverse document frequency: $idf_i = \log \frac{|D|}{|\{d : w_i \in d\}|}$ No. all images (documents) No. all images containing w_i

• tf-idf of word
$$w_i$$
 in image j is: $= tf_{ij} \cdot idf_i$

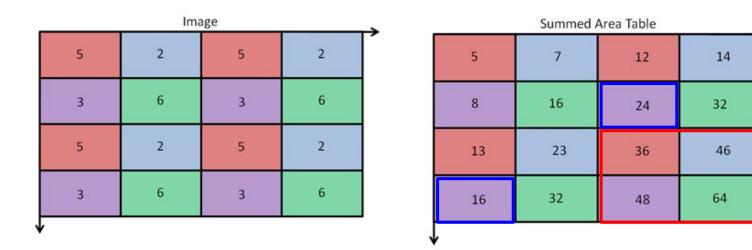
Source: Margarita Chli

Questions |

Read and Summarize:

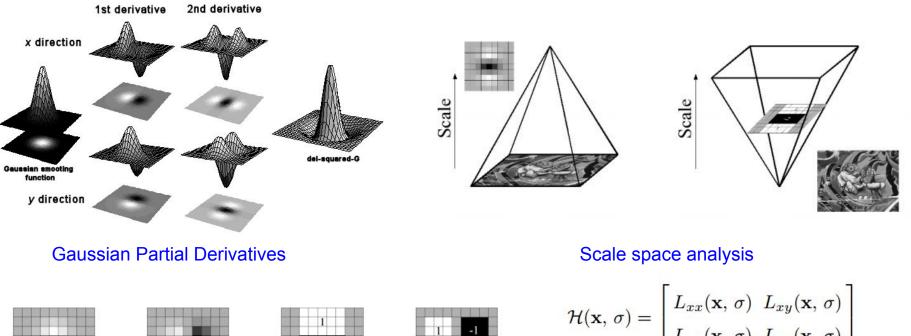
- 1) SURF Detector and Descriptor
- 2) ORB Detector and Descriptor

SURF Detector | Integral Image



Create: 16 + 12 - 7 + 3 = 24Create: 16 + 23 - 13 + 6 = 32Query: 64 + 16 - 32 - 32 = 16same as 6+5+3+2 = 16

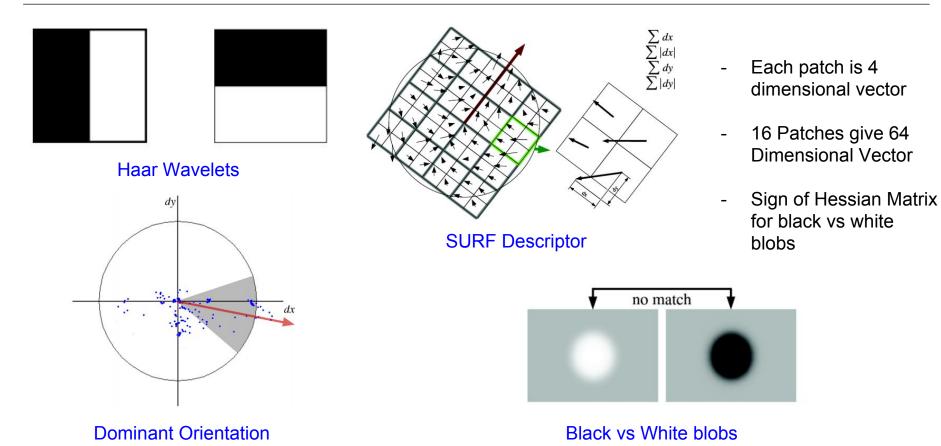
SURF Detector | Speeded Up Robust Features



$$\mathcal{H}(\mathbf{x}, \sigma) = \begin{bmatrix} L_{xx}(\mathbf{x}, \sigma) & L_{xy}(\mathbf{x}, \sigma) \\ L_{xy}(\mathbf{x}, \sigma) & L_{yy}(\mathbf{x}, \sigma) \end{bmatrix}$$
$$\det(\mathcal{H}_{approx}) = D_{xx}D_{yy} - (wD_{xy})^2.$$

Hessian Matrix and Determinant

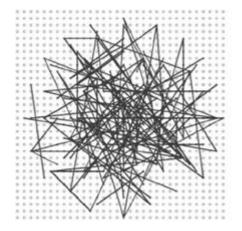
SURF Descriptor |



- FAST corner Detector
- Harris Corner Measure
- FAST detected at multiple levels in the Pyramid for Scale Invariance

BRIEF: Binary Robust Independent Elementary Features

- Random Selection of pairs of Intensity Values
- Fixed sampling Pattern of 128, 256 or 512 pairs
- Hamming Distance to compare descriptors (XOR)



ORB Descriptor |

$$m_{pq} = \sum_{x,y} x^p y^q I(x,y)$$

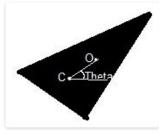
Patch moments

$$C = \left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$$

Center of Mass

$$\theta = \operatorname{atan2}(m_{01}, m_{10})$$

Orientation



Learning the

paris

Angle Calculation

- 1. Run each test against all training patches.
- 2. Order the tests by their distance from a mean of 0.5, forming the vector T.
- 3. Greedy search:
 - (a) Put the first test into the result vector R and remove it from T.
 - (b) Take the next test from T, and compare it against all tests in R. If its absolute correlation is greater than a threshold, discard it; else add it to R.
 - (c) Repeat the previous step until there are 256 tests in R. If there are fewer than 256, raise the threshold and try again.
 - 300K Keypoints
 - 205590 Possible Tests
 - 256 dimensional descriptor

