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Transformations| Motivation

How do we map and analyze quantities between co-ordinate frames?
6 DOF, translation in space and rotation of coordinate axes



Kinematics Overview | Outline: Part 1
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Transformations| Mathematical Preliminaries

• Transformations from one coordinate frame to another can be 
described using standard geometric structures

• A brief intro to the definitions we will rely on, and what all the 
terms mean follows

• This field works from first principles to define the minimum 
properties needed to create well known types of structures

• What are the minimum properties (axioms) to define 
integers, real numbers, etc.?
• Groups, Rings, Fields
• Vectors spaces

• Warning!  Needs further expansion and clarification



Transformations| Groups and Linear groups

A group, G, is set of elements with an operation, ∘ ∶ 𝑮 × 𝑮 → 𝑮 ,
which satisfies the following four axioms for all 𝑔 ∈ 𝐺:

Closed: 𝑔 ∘ 𝑔 ∈ 𝐺

Associative: 𝑔1 ∘ 𝑔2 ∘ 𝑔3 = 𝑔1 ∘ 𝑔2 ∘ 𝑔3

Identify element, e : 𝑒 ⋅ 𝑔 = 𝑔 ⋅ 𝑒 = 𝑔

Inverse element, 𝑔−1 : 𝑔−1 ⋅ 𝑔 = 𝑒



Transformations| Groups

Examples:
Integers under addition (not multiplication, no inverse)

a + b = c,   e = 0,  a-1 = -a

Fractions under multiplication

Rubic’s cube patterns under rotations

a c ac

b d bd
 1e 

1
a b

b a



 
 

 



Transformations| General Linear Group

• An example group is the set of all invertible, 𝑛 × 𝑛 –matrices 
called the general linear group, GL(n)

• With respect to matrix multiplication  this group is closed and 
all axioms above hold
• Check!

• GL(n) consists of 𝑨 ∈ 𝑀(𝑛) for which det 𝑨 ≠ 𝟎



Transformations| Rings

A ring, R, is set of elements with two operations, +: 𝑹 × 𝑹 → 𝑹,
and ∘: 𝑹 × 𝑹 → 𝑹 which satisfy the following axioms for all 𝑟 ∈ 𝑅:

(R, +) is an Abelian Group ( a group for which a+b=b+a)

(R, ∘ ) is associative: 𝑔1 ∘ 𝑔2 ∘ 𝑔3 = 𝑔1 ∘ 𝑔2 ∘ 𝑔3

Multiplication is distributive w.r.t. addition

𝑔1 ∘ 𝑔2 + 𝑔3 = 𝑔1 ∘ 𝑔2 + (𝑔2 ∘ 𝑔3)

In fact, integers are actually a ring 
( a group with these extra properties)



Transformations| Fields

A field, F, is set of elements with two operations, +: 𝑭 × 𝑭 → 𝑭,
and ∘: 𝑭 × 𝑭 → 𝑭 which satisfy the following axioms for all 𝑓 ∈ 𝑭:

(F, +) is an Abelian Group ( a group for which a+b=b+a)

(F, ∘) is an Abelian Group ( a group for which a ∘ b=b ∘ a)

Rational numbers, real numbers and complex numbers are all 
fields



Transformations| Vector Space

• A vector space, V, over a field , F, is set of elements of , V, with 
two operations,addition, + : 𝑽 × 𝑽 → 𝑽, and scalar 
multiplication ∘ ∶ 𝑭 × 𝑽 → 𝑽 which satisfy the following axioms 
for all 𝐮, 𝐯,𝐰 ∈ 𝑽, a,b ∈ 𝑭:
• Associativity of addition: u + (v + w) = (u + v) + w
• Commutativity of addition: u + v = v + u
• Identity element of addition: 0 ∈ V, v + 0 = v for all v ∈ V.
• Inverse elements of addition: v ∈ V, -v ∈ V, v + (−v) = 0.
• Compatibility of scalar multiplication with field multiplication:  a(bv) = (ab)v
• Identity element of scalar multiplication: I v = v 
• Distributivity of scalar multiplication w.r.t vector addition: a(u + v) = au + av
• Distributivity of scalar multiplication with respect to field addition: 

(a + b)v = av + bv

• We are interested in Euclidean vector spaces, where every 
vector encodes a magnitude and direction, 
• Translations live in a vector space
• Rotations live in a group



Kinematics Overview | Definitions: Manifold

A manifold is a topological space that locally looks like an 
open subset of 

Each point of an n-dimensional manifold has a neighbourhood that is 

homeomorphic to Euclidean space of dimension n.



Kinematics Overview | Definitions: Tangent Space

Tangent Space: A vector space that best 
approximates the manifold about a point, tangent to 
the manifold at the point.



Kinematics Overview | Definitions: Lie Group

A Lie Group is a both a group and a smooth manifold 
such that the maps

are smooth,         , meaning the maps are 
differentiable so small deviations are continuous

Rotations SO(3) and Transformations SE(3) are 
examples of Lie Groups



Transformations| Rotations – SO(3)

• Rotations are part of a special Lie group
• Special: det(R) =1
• Orthogonal: matrix rows/columns are orthogonal

• SO(3) or Special Orthogonal Group



Transformations| Transformation – SE(3)

• An element of a Euclidean Group, E(n) is combines a 
translation and an orthogonal rotation A,

• When A is from SO(3), we get the Special Euclidean 
Group

• Homeomorphic to
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Transformations| Rotations – Euler Angles



• Euler’s Theorem: Any two independent orthonormal 
coordinate frames can be related by a sequence of at 
most three rotations about coordinate axes, where no 
two successive rotations may be about the same axis

• Given First Axes (xyz), rotate to

Second Axes (XYZ) through 3 

successive rotations
• Rotation 1: About z by α
• Rotation 2: About N by β
• Rotation 3: About Z by γ

• Known as 3-1-3 Euler Angles 

18

Transformations| Rotations – Euler Angles



• Aero convention: 3-2-1 Euler Angles
• Roll, Pitch, Yaw (when decoupled): 

• Rotation Matrices
• 3 - Yaw

• 2- Roll

• 1- Pitch

19
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Transformations| Rotations – Euler Angles



• Direction Cosine Matrix (DCM)
• All three rotations combined (from inertial to body)
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Transformations| Rotations – Euler Angles



• Euler angles are measured relative to intermediate 
coordinate frames (3-2-1), 
• Not a rotation matrix 
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Transformations| Rotations – Euler Angles



• Resulting transformations

22

1 0 sin

0 cos cos sin

0 sin cos cos

p

q

r

 

   

   

     
    
    
         

1 sin tan cos tan

0 cos sin

sin cos
0

cos cos

p

q

r

    

  

  

 

 
    
     
    
      
  

eR

eR

Transformations| Rotations – Euler Angles



Transformations| Rotations – Gimbal Lock



• An alternative way of representing rotations is 
through quaternions
• Hamilton (1843) was looking for a field of dimension 4, 

to complete the picture (reals are a field of dimension 1, 
complex are a field of dimension 2)
• Was only able to find a non-commutative division ring 
• He called them quaternions
• While walking with his wife in Dublin, scribbled the rule of 

quaternions on a bridge so he would not forget it.

• Everything but commutative multiplication work for 
quaternions (almost a field)

2 2 2 1    i j k ijk

Transformations| Quaternions



• Quaternions are a 4-tuple, divided into a scalar and 
a 3-vector
• Let

• Then a quaternion                                  can be written as

• Addition simply adds the elements
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Transformations| Quaternions



• Quaternions are a 4-tuple, divided into a scalar and 
a 3-vector
• Multiplication by a constant

• The product of two quaternions is defined by Hamilton’s 
rule

0 1 2 3
cq cq cq cq cq   i j k

2 2 2 1    i j k ijk

  

  

  

ij k ji

jk i kj

ki j ik

Transformations| Quaternions



• To get the rule for multiplication, do it out 
longhand and simplify

• Let , then

• In matrix form, 

  
0 1 2 3 0 1 2 3

pq p p p p q q q q      i j k i j k

0 0
( , ), ( , )p p q q p q

0 0 0 0
r pq p q p q       p q q p p q

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

p p p p q

p p p p q
r pq

p p p p q

p p p p q

     
   
    

   
   

   

Scalar part, r0 Vector part, r

Transformations| Quaternions



• The complex conjugate of a quaternion is similar to 
complex numbers

• Which leads to 

• And

• The 2-norm of a quaternion is 

*

0
q q q

*

0
2q q q 
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Transformations| Quaternions



• The inverse of a quaternion

• And if the quaternion is a unit quaternion

• Which is similar to a rotation matrix

1 1 1q q qq  

1 * * 1 *q qq q qq q  

*

1

2|| ||

q
q

q

 

1 *q q 

Transformations| Quaternions



• Unit quaternions can be related to an angle (and a 
vector), similar to the rotation matrix

• Therefore, there must exist an angle                        for any 
quaternion q

• Then

• And we can express the unit quaternion and its conjugate 
as 
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Transformations| Quaternions



• Define the unit quaternion rotation operator as

• Where v is the quaternion version of a vector v with zero 
scalar part (v=(0,v) and quaternion multiplication is used. 
Simplifying yields 

• The unit quaternion rotation operator is linear
• Satisfies additivity and distributivity

• The norm  ||Rq(v)|| is still ||v||
• So it appears we might be on to something, here

• If quaternions represent a rotation, then the rotation operation 
becomes linear in quaternion space

*( )qR v qvq

2 2

0 0( ) ( || || ) 2( ) 2 ( )qR v q q     q v q v q v

Transformations| Quaternions



• Theorem: The quaternion rotation operator Rq(v) 
performs a rotation of v by 2θ about q.

• Proof: Define the components of v in the direction 
of and perpendicular to q (a and n, respectively).

• Which implies

• By linearity and the definition of the rotation 
operator

 v a n

ka q

( ) ( ) ( ) (0, )q q qR a R kq kR q kq a     a

Transformations| Quaternions



• So the component of v along q is invariant to 
rotation, as required.

• For the perpendicular component, we must show 
that a rotation by 2θ occurs

• Expanding

• Denote                   

2 2
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Transformations| Quaternions



• Note that 

• Finally, using angle description of q

• But this is just a rotation of the component of  v 
perpendicular to q in the plane by 2θ.

|| || || || || |||| || sin / 2 || ||    n u n u n n
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Quaternions for rotations

• The picture v
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a
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• So now we have a physical interpretation of the 
quaternion as a combination of the Euler rotation 
vector v=q and angle γ=2θ

• Going back to rotation operator, we can write it in 
matrix form and extract a conversion to rotation 
matrix

2 2
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2 2
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2 2
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• Similar to the rotation matrix and Euler angle 
update, quaternions can be updated directly from 
body rotation rates

• Body rotation rate quaternion (notation abuse)

• Given a vector v with quaternion v= (0,v) and a unit  
quaternion q defining a rotation about q by 2θ

(0, )B B  ω

1'v qvq

1 1'q v vq 

'v q qv
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• Differentiating yields

• Rearranging

• From qq-1= 1, we get

1
1'dv dq dq

vq qv
dt dt dt


 

1
1'

' '
dv dq dq

q v v q
dt dt dt


 

1
1 0

dq dq
q q

dt dt


  

Transformations| Quaternions



• And combining leads to

• Now define

• So we get

1 1'
' '

dv dq dq
q v v q

dt dt dt

  

1dq
p q

dt



'
' '

dv
pv v p

dt
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• Recall that the scalar and vector parts of a 
quaternion multiplication are defined by

• The scalar part of v’ is 0 and, it turns out, the scalar 
part of dv’/dt is too

Scalar part, r0 Vector part, r

0 0 0 0
r pq p q p q       p q q p p q

'
' '

dv
pv v p

dt
 

'
' '0

0 0 0 0

0

dv
p v v p

dt
     



p v v p
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• The vector part of dv’/dt returns

• So dv’/dt is a vector defined by a cross product

• We also know that dv’/dt is defined by the vector v’ 
and its rate of rotation

'
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• Looking at p, we see that

• And so we can update our quaternion as follows 
(with quaternion multiplication)

1

2

2

B
p

dq
q
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Kinematics Overview | SO(3)

As defined above, the Special Orthogonal group can 
also represent rotations

Not all 3x3 matrices are members of SO(3)
• Recall we have constraints on the rotation matrix.
• Locally, the group is 3 dimensional.
• 3 dimensional manifold embedded in 

• What matrices in SO(3) differ from the identity by 
a small amount?



A Rotation matrix near identity:

The rotation times its transpose is identity:

Kinematics Overview | SO(3)



Ignoring second order terms:

Six independent constraints:

Only need three parameters (b,c,f)

Kinematics Overview | SO(3)



Any rotation near the identity looks like

G1,G2,G3 are called Generators

Kinematics Overview | SO(3)



All group elements have a tangent space. Together, 
known as a Tangent Bundle

Kinematics Overview | Tangent Space and the Lie Algebra



All group elements have a tangent space. Together, 
known as a Tangent Bundle
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All group elements have a tangent space. Together, 
known as a Tangent Bundle

Kinematics Overview | Tangent Space and the Lie Algebra



All group elements have a tangent space. Together, 
known as a Tangent Bundle

Kinematics Overview | Tangent Space and the Lie Algebra



Let’s re-visit our SO(3) example

If we let the generator coefficients become non 
infinitesimal, we get a 3-dimensional space that is 
tangent to the Identity element.  Note that the 
generators form a basis for this space.  

Kinematics Overview | Tangent Space and the Lie Algebra



2D visualization

The tangent space at the identity element is given a 
special designation: the Lie Algebra of the group,
and is denoted by

Kinematics Overview | Tangent Space and the Lie Algebra



Kinematics Overview | Lie Algebra: Properties

The Lie Algebra is a vector space, along with a binary 
operation called the Lie Bracket

Must satisfy full list of axioms associated with Lie 
Bracket (https://en.wikipedia.org/wiki/Lie_algebra)



The tangent space at the identity element (Lie 
Algebra) is isomorphic to the tangent space of the 
other group elements.

Kinematics Overview | Tangent Space and the Lie Algebra



Define a tangent space element at the identity:

Kinematics Overview | Relationship of Lie Algebra to Lie Group



The differential equation that relates the tangent 
spaces:

Kinematics Overview | Relationship of Lie Algebra to Lie Group



Solve the differential eqn with initial condition

Kinematics Overview | Relationship of Lie Algebra to Lie Group



We call this relationship between the Lie Algebra and Lie 
group the exponential map. For SO(3), when t=1

Kinematics Overview | Relationship of Lie Algebra to Lie Group



Visual example of exponential map

As n grows, quantity inside brackets becomes member 
of SO(3).  Multiplication n times also gives member of 
SO(3). Successive approximations:

Kinematics Overview | Exponential Map



For SO(3), the Lie Algebra is the set of all skew-
symmetric matrices

This gives us a very nice parameterization for SO(3), 
using an element in      to represent an element in SO(3). 

Kinematics Overview | Parameterization



Exponential Map for SO(3) has a closed form solution, 
called the Rodrigues formula.

We can also invert the exponential map using the 
logarithmic map.

Kinematics Overview | Parameterization



We can use a similar derivation to get the generators of 
SE(3)

G1,G2,G3 are generators for the translations, G4,G5,G6 
are the generators for the rotation.

Kinematics Overview | Transformations: SE(3)



The exponential map for SE(3) also has a closed form:

Kinematics Overview | Transformations: SE(3)



The logarithmic map for SE(3) also has a closed form:

Kinematics Overview | Transformations: SE(3)



Kinematics Overview | SO(3) and SE(3) Summary

Rotation Transformation

Matrix
3x3 matrix 4x4 matrix

Lie Group SO(3) SE(3)

Lie Algebra so(3) se(3)

Tangent vectors
“angular velocities” “twist”



• DONE!



• Kinematics Overview| Axis Angle: Any better?

• Still investigating in more detail

• exp map is not one-to-one, will map rotations in 
multiples of 2𝜋 to same group element
• Also need to be careful when rotation magnitude is 

close to zero



Kinematics Overview| Kinematics Standards: Frame Diagram



Kinematics Overview| Kinematics Standards: Vector Decoration

Arun Das| Waterloo Autonomous Vehicles Lab



Kinematics Overview| Kinematics Standards: Vector Decoration

Arun Das| Waterloo Autonomous Vehicles Lab



Kinematics Overview| Kinematics Standards: Vector Rotation

Arun Das| Waterloo Autonomous Vehicles Lab

• Be very clear in terms of rotation direction



Kinematics Overview| Kinematics Standards: Vector Rotation

Arun Das| Waterloo Autonomous Vehicles Lab



Kinematics Overview| Kinematics Standards: Pose Transformations

Arun Das| Waterloo Autonomous Vehicles Lab

• Be very clear about the pose transformation direction



Kinematics Overview| Kinematics Standards: Pose Transformations

Arun Das| Waterloo Autonomous Vehicles Lab



Kinematics Overview| Kinematics Standards: Code implementation

Arun Das| Waterloo Autonomous Vehicles Lab



Kinematics Overview| Moose Standards

Arun Das| Waterloo Autonomous Vehicles Lab

Frame Description Kinematics 
Tag

Camera Camera Lens Optical Center C

Point Landmark (Point) Frame P

Vehicle Centre of Back Axle V

IMU IMU Origin I

GPS Antenna Phase Center G

Lidar Local Lidar Point Frame L

Encoder About axis of rotation E

Radar Radar Center R

ECEF Earth Centered Earth Fixed F

Map Localization Map Frame M



Kinematics Overview | Preview for Part 2

Arun Das | Waterloo Autonomous Vehicles Lab

• In depth derivations of the closed forms for exp
and log maps on SO(3) and SE(3)

• Adjoint mapping and representations

• Defining “distance” between group elements

• Differential Calculus on SO(3) and SE(3)

• Implementation using wave::kinematics

• Building residual terms using wave::kinematics


