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 Example Videos
 Wheeled, Legged, Aerial, Aquatic

 Motion Modeling
 Definitions
 Kinematics and Dynamics
 Standard models and disturbances
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OUTLINE
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SWEDISH WHEELS IN ACTION
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LEGGED ROBOTS IN ACTION
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LEGGED ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION



 Example Videos
 Wheeled, Legged, Aerial, Aquatic

 Motion Modeling
 Definitions
 Kinematics and Dynamics
 Standard models and disturbances
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OUTLINE



 A motion model seeks to describe how system 
motion can occur
 Given inputs (T), what will the system do (Ɵ)?
 Define a set of constraints between states and inputs
 Define unknown disturbances as distributions (ɛ)
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MOTION MODELING
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STATE

 The state may include variables describing only 
the vehicle, or the vehicle and it’s environment

 Common Vehicle States: Position, Velocity, Attitude, 
Attitude Rates, Motor Speeds, Battery/Fuel Level

 Common Environment States: Feature Locations, 
Surface Polygons and Normals, Wind Conditions, 
Ocean Currents 

Recall: The state of a system is a vector of 
system variables that entirely defines the system 
at a specific instance in time.



 Known as the Markov Assumption
 Ensures that past and future states are independent if the 

current state is known

 Very useful for estimation and control
 No need to store excessive amounts of data, only the 

current state

 Must balance size of model (number of states) with 
violations of Markov assumption
 Ignoring the state of wind on an aircraft leads to 

significant errors in velocity control
 However, integral control can accommodate
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COMPLETE STATE

Definition: A state vector is complete if it is the 
best predictor of the future. 



 The same notion as in classical and state space 
controls 

 Common vehicle inputs:
 Motor throttle, voltage, servo pwm command, 

steering angle, elevator angle

 Referred to as control actions in Thrun et al.
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INPUTS

Definition: The inputs of a system are the set of 
variables that drive the system that can be controlled.



 Disturbances are why we need a control system 
(and stability), cause uncertainty in state

 The better the model of disturbances, the better 
their effect can be rejected.

 Most common model used is additive Gaussian
 Often then augmented with linear, nonlinear 

mapping 18

DISTURBANCES

Definition: The disturbances of a system are the set of 
variables that drive the system that cannot be 
controlled.



 The discrete time motion model is defined as 

 xt is the state vector at time t

 ut is the input vector at time t

 Ɛt is the disturbance to the system at time t
 e.g. 

 f(xt-1,ut, Ɛt) is the motion model
 Can be linear, nonlinear, discontinuous, hybrid
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MOTION MODEL
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 The Markov assumption implies the following 
dependencies

 The motion model captures a single transition 
from one time period to the next
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 Linear models with additive Gaussian 
disturbances
 Linear models satisfy superposition
 Can always be written in standard form

 Nonlinear models with additive Gaussian 
disturbances

 Nonlinear models with nonlinear disturbances
21

MOTION MODEL TYPES
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 Motion models can be viewed in other ways
 Probabilistically, the probability of ending in state xt

given input ut and prior state xt-1

 Continuous time, the rate of change of the states is 
governed by a nonlinear function of state, input and 
disturbances
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MOTION MODEL TYPES
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 Degrees of freedom vs. states
 Degrees of freedom are axes of independent motion, 

whereas states may also include derivatives and 
other terms.
 A quadrotor has 6 degrees of freedom (X, Y, Z, roll, pitch, 

yaw) but at least 12 states.

 Constraints on the motion
 Holonomic vs. nonholonomic constraints

 Holonomic constraints depend only on the “position” of the 
vehicle 
 On the states that define the degrees of freedom

 Nonholonomic constraints also depend on velocity (or the 
derivatives of the position)
 On all states, on how a vehicle moves 23

MOTION MODELS



 At low speeds, it is often sufficient to look only at 
kinematic models of vehicles
 Two wheeled robot
 Bicycle model

 However, when forces vary with the state, more 
precise modeling can be beneficial
 Dynamic modeling of cars for cruise control
 Quadrotor dynamics

 In this course, models will mostly be supplied, 
assume you already know how to define them
 These notes now cover the basic models we use 24

KINEMATIC AND DYNAMIC MODELS



 Five basic models to be used throughout course
 Linear dynamic model 

 AUV
 Simple 2D Nonholonomic model 

 Two-wheel robot, speed and rotation rate inputs
 2D Nonholonomic model 

 Two-wheel robot, left and right wheel speed inputs
 Bicycle model

 Two wheel model with speed and steering angle
 Valid for four wheel cars as well

 Quadrotor dynamic model
 Example of 6DOF model with four thrust inputs

MOTION MODELS

25



 Linear Example – Simple AUV
 3D Linear motion model for three thruster AUV 

(attitude held constant)
 State Input 

 Continuous dynamics for 
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LINEAR DYNAMIC MODEL
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 Example – Linear AUV
 Should always perform discretization through zero-

order hold, first-order hold, Tustins
 Simple alternative (for exams, proof of concept):

 Approximating left hand side derivatives with finite 
differences, holding right hand side at previous values

 Solving for current state
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LINEAR DYNAMIC MODEL
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 Example – Linear AUV
 Discrete Dynamics 

 Comes from approximation to matrix exponential

 More accurate approaches (which rely on actually 
calculating matrix exponential) can be used by taking 
advantage of built-in Matlab tools. 28

LINEAR DYNAMIC MODEL
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 Example – Linear AUV
 Discrete Dynamics from zero order hold of continuous 

model (only N,E directions for plotting purposes)

 Comparison to above solution
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LINEAR DYNAMIC MODEL
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 Example – Linear AUV in X,Y plane
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 Two-wheeled robot
 Vehicle State, Inputs:

 Motion Model
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TWO-WHEELED KINEMATIC MODEL
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 Two-wheeled robot with additive Gaussian 
disturbances
 Disturbance model

 Rt diagonal
 Independent disturbances

 Motion Model
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 Example: Two-wheeled robot with additive 
Gaussian disturbances
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 Two-wheeled robot with nonlinear disturbances
 Speed, heading  affected

 Motion Model

34

KINEMATIC MODEL

O

IY

IX



x

y

   
   
 

1, 1 1, 3, 11,

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

cos

( , , ) sin

v
t t t t tt

v
t t t t t t t t t

t t t t

x u x dtx
x g x u x u x dt
x x u dt







 

  



 

  



                      

~ (0, )v v
t tN R

~ (0, )t tN R 



 Example: Two-wheeled robot with nonlinear 
disturbances (accurate steering and velocity 
control)

35

KINEMATIC MODEL
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 Example: Two-wheeled robot with nonlinear 
disturbances (poor steering)
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TWO-WHEELED KINEMATIC MODEL
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 Example: Two-wheeled robot with nonlinear 
disturbances (poor velocity control)
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TWO-WHEELED KINEMATIC MODEL
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TWO-WHEELED KINEMATIC MODEL
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 If the control inputs are wheel speeds, can 
augment the model as follows:
 Center:
 Wheel to center:
 Wheel radius:
 Wheel rotation rates: 
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 Kinematic constraint

TWO-WHEELED KINEMATIC MODEL
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 Velocity is the average of the two wheel velocities
 We can use the instantaneous centre of rotation 

(ICR)

TWO-WHEELED KINEMATIC MODEL
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 Equivalent triangles give the angular rate 
equation

TWO-WHEELED KINEMATIC MODEL
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 So we now have a pair of equality constraints 
that relate the wheel rotation rates to the speed 
and rotation rate of the vehicle.  Return to the 
standard 2 wheel robot, but change the inputs
 Vehicle State:

 Inputs:
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 Summarizing the kinematic model in body 
coordinates

 Finally, the full dynamics of the vehicle are
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 Bicycle model
 Front wheel 

steering
 Track motion of 

rear wheel
 Rear x, y 

dynamics same 
as before

 Front wheel
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 For rotation, we rely on the Instantaneous 
Center of Rotation (ICR) again
1.

2.

3.

4.
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 Standard bicycle model

 Good model for cars, Ackermann robots
 Add drivetrain dynamics which affect speed control
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DYNAMIC MODELS

 For some robots, kinematics are insufficient to 
describe relationship between inputs and vehicle 
state

 Dynamics include forces and moments acting on 
robot in motion model

 Process:
 Draw Free Body Diagram
 Define equations of motion
 Model forces and moments acting on vehicle
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 Example: Quadrotor helicopter
 Free Body Diagram
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DYNAMIC MODELS - STANDARD FORMS (EULER)

 Inertial frame

 Common matrix form
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DYNAMIC MODELS

 Equations of motion
 Standard 6 DOF motion model

 Can be used for any rigid body that translates and 
rotates in 3D

 Naturally aligns with inertial (GPS) position and 
body (gyro) angular rate measurement

I I

I I

E B

B B B B

p v
mv F

R
J M J


  




 
  







50

Iv

I

Ip



DYNAMICS

 Forces acting on vehicle

 Moments acting on vehicle
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 Trajectory Control in Windy Conditions
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RESULTING MOTION

Carlos Wang, University of Waterloo, 2009
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EXTRA SLIDES
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WHEEL CONFIGURATIONS

 Two-wheeled
 Bicycle
 Segway

 Three-wheeled
 Dolley
 Tricycle
 Big Wheel
 Omni-directional

 Four-wheeled
 Rear/Front/4 WD
 Crazy vehicles



 Kinematics governed by wheel number, type, 
geometry
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WHEELED MOTION
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 Main Issues:
 Stability
 Maneuverability
 Controllability
 Mechanical Complexity

 Passive stability is guaranteed with 3 wheels, 
improved with 4 wheels
 Active stability required with less (bicycle, Segway)

 Maneuverability/Controllability/Complexity
 Combining steering and drive on one wheel difficult 

to realize but great for control (front wheel drive)  
56

WHEEL CHOICE

Image courtesy of Segway
Image courtesy of Segway

Image courtesy of Payam Sabzmeydani



 Suspension required to maintain contact, smooth 
sensor motion

 Bigger wheels effective for overcoming obstacles, 
but require more torque
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UNEVEN TERRAIN

Image courtesy of T. Barfoot Image courtesy of EPFL



 Inspired by nature, less efficient, 
more maneuverable than wheeled 
motion

 Number of legs determines stability
 Number of joints determines 

maneuverability
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LEGGED MOTION

Image courtesy of Lego



 Usually requires predefined gait
 Sequence of motions that achieves forward mobility
 Dynamics quite complex, specialized

59

LEGGED MOTION

Free 
Fly

Changeover 
Walking Galloping



 Once gait is defined, motion can be approximated 
by rolling polygon
 Leg angle

 Polygon sides

 Hip height

 Forward speed

 m steps per second, δt elapsed time 60

LEGGED MOTION
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LEGGED MOTION

 Red circle = hip height
 Leg length = step distance = 1
 Steps per second = 0.5



 Fixed Wing – Longitudinal Forces and Moments
 Elevator causes moment about cg
 Tail resists rotation about cg (damping)
 Total lift and weight approximately balance
 Drag increases with elevator deflection
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AERIAL MOTION
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 Rotary wing: Quadrotors have two pairs of 
counter-rotating blades allow for fixed pitch 
rotors and independent actuation of roll, pitch, 
yaw and altitude
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AERIAL MOTION

Yaw Torque

Roll/Pitch Torque Total Thrust for Motion
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 Flapping Wing
 Biologically 

inspired, difficult 
to achieve 
comparable 
efficiency to fixed, 
rotary wing

 Similar approach 
to walking
 Produce cyclic 

model of forces 
and moments
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AERIAL MOTION

Dr. James DeLaurier, 2006
University of Toronto Aerospace Institute
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UWMAV IN ACTION



 Ship motion, close to planar ground robot
 Propulsion and steering at rear
 Sideslip possible
 Augmented model may include roll, pitch

 Submersible motion, analogous to fixed wing 
aircraft
 Buoancy replaces lift to counteract gravity

 Swimming motion
 Complex cyclic behaviour, can be modeled in a 

similar manner to walking, flapping
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AQUATIC MOTION



 World Autonomous Sailing Competition 2008
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AQUATIC ROBOTS IN ACTION



SWEDISH WHEEL ROBOT
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