

Prof. Steven Waslander

 \circ p(A): Probability that A is true

$$0 \le p(A) \le 1$$

$$p(True) = 1, p(False) = 0$$

$$p(A \lor B) = p(A) + p(B) - p(A \land B)$$

- Discrete Random Variable
 - X denotes a random variable
 - X can take on a countable number of values

$$X \in \left\{ x_1, ..., x_n \right\}$$

• The probability that X takes on a specific value

$$p(X = x_i)$$
 or $p(x_i)$

• A 6-sided die's discrete probability distribution

$$p(x_i) = \sum_{i=1}^{n} p(x_i) = 1$$

$$x_i = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

- Continuous Random Variable
 - X takes on a value in a continuum
 - Probability density function, p(X=x) or p(x)
 - Evaluated over finite intervals of the continuum

$$p(x \in (a,b)) = \int_{a}^{b} p(x)dx$$

- Measures of Distributions
 - Mean
 - Expected value of a random variable

$$\mu = E[X]$$

$$\mu = \sum_{i=1}^{n} x_i p(x_i) \text{ discrete case}$$

$$\mu = \int x p(x) dx \text{ continuous case}$$

- Variance
 - Measure of the variability of a random variable

$$Var(X) = E\left[(X - \mu)^2\right]$$

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 p(x_i) \text{ discrete case}$$

$$Var(X) = \int (x - \mu)^2 p(x) dx \text{ continuous case}$$

• Square root of variance is standard deviation, $\sigma^2 = Var(X)$

- Multi-variable distributions
 - Vector of random variables

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$

Mean

$$\mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} E[X_1] \\ \vdots \\ E[X_n] \end{bmatrix}$$

- Multi-variable distributions
 - Covariance
 - Measure of how much two random variables change together

$$Cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)]$$

= $E[X_i X_j] - \mu_i \mu_j$

- If Cov(X,Y)>0, when X is above its expected value, then Y tends to be above its expected value
- If Cov(X, Y) < 0, when X is above its expected value, then Y tends to be below its expected value
- If X, Y are independent, Cov(X, Y) = 0

- Multi-variable distribution
 - Covariance Matrix, Σ
 - Defines variational relationship between each pair of random variables

$$\Sigma_{i,j} = Cov(X_i, X_j)$$

• Generalization of variance, diagonal elements represent variance of each random variable

$$Cov(X_i, X_i) = Var(X_i)$$

• Covariance matrix is symmetric, positive semi-definite

Multiplication by a constant matrix yields

$$cov(Ax) = E[(Ax - A\mu)(Ax - A\mu)^{T}]$$

$$= E[A(x - \mu)(x - \mu)^{T} A^{T}]$$

$$= AE[(x - \mu)(x - \mu)^{T}]A^{T}$$

$$= Acov(x)A^{T}$$

Addition/Subtraction of random variables

$$cov(X \pm Y) = E \Big[\Big((X - \mu_x) \pm (Y - \mu_y) \Big) \Big((X - \mu_x) \pm (Y - \mu_y) \Big)^T \Big]$$

$$= E \Big[(X - \mu_x) (X - \mu_x)^T \pm (X - \mu_x) (Y - \mu_y)^T \\ \pm (Y - \mu_y) (X - \mu_x)^T + (Y - \mu_y) (Y - \mu_y)^T \Big]$$

$$= cov(X) + cov(Y) \pm 2 cov(X, Y)$$

If X,Y independent,

$$cov(X \pm Y) = cov(X) + cov(Y)$$

- Joint Probability
 - Probability of x and y:

$$p(X = x \text{ and } Y = y) = p(x, y)$$

- o e.g. probability of clouds and rain today
- Independence
 - If X, Y are independent, then

$$p(x, y) = p(x)p(y)$$

• e.g. probability of two heads coin-flips in a row is 1/4

- Conditional Probability
 - Probability of x given y

$$p(X = x \mid Y = y) = p(x \mid y)$$

- Probability of KD for dinner, given a Waterloo engineer is cooking
- Relation to joint probability

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

If X and Y are independent,

$$p(x \mid y) = p(x)$$

• Follows from the above

Law of Total Probability

Discrete

$$\sum_{x} p(x) = 1$$

$$p(x) = \sum_{y} p(x, y)$$

$$p(x) = \sum_{y} p(x \mid y) p(y)$$

Continuous

$$\int p(x)dx = 1$$

$$p(x) = \int p(x, y) dy$$

$$p(x) = \int p(x \mid y) p(y) dy$$

- Probability distribution
 - It is possible to define a discrete probability distribution as a column vector

$$p(X = x) = \begin{bmatrix} p(X = x_1) \\ \vdots \\ p(X = x_n) \end{bmatrix}$$

The conditional probability can then be a matrix

$$p(x \mid y) = \begin{bmatrix} p(x_1 \mid y_1) & \dots & p(x_1 \mid y_m) \\ \vdots & \ddots & \vdots \\ p(x_n \mid y_1) & \dots & p(x_n \mid y_m) \end{bmatrix}$$

- Discrete Random Variable
 - And the Law of Total Probabilities becomes

$$p(x) = \sum_{y} p(x | y) p(y)$$
$$= p(x | y) \cdot p(y)$$

• Note, each column of p(x|y) must sum to 1

$$\sum_{x} p(x \mid y) = \sum_{x} \frac{p(x, y)}{p(y)}$$
$$= \frac{\sum_{x} p(y, x)}{p(y)} = \frac{p(y)}{p(y)} = 1$$

Relation of joint and conditional probabilities

Total probability

- Bayes Theorem
 - From definition of conditional probability

$$p(x | y) = \frac{p(x, y)}{p(y)}, \quad p(y | x) = \frac{p(x, y)}{p(x)}$$

$$p(x | y)p(y) = p(x, y) = p(y | x)p(x)$$

• Bayes Theorem defines how to update one's beliefs about X given a known (new) value of y

$$p(x | y) = \frac{p(y | x)p(x)}{p(y)} = \frac{likelihood \cdot prior}{evidence}$$

• Bayes Theorem

- If Y is a measurement and X is the current vehicle state, Bayes Theorem can be used to update the state estimate given a new measurement
 - Prior: probabilities that the vehicle is in any of the possible states
 - Likelihood: probability of getting the measurement that occurred given every possible state is the true state
 - Evidence: probability of getting the specific measurement recorded

$$p(x | y) = \frac{p(y | x)p(x)}{p(y)} = \frac{likelihood \cdot prior}{evidence}$$

- Bayes Theorem
 - Example: Drug testing
 - A drug test is 99% sensitive (will correctly identify a drug user 99% of the time)
 - The drug test is also 99% specific (will correctly identify a non-drug user 99% of the time
 - A company tests its employees, 0.5% of whom are drug users
 - What's the probability that a positive test result indicates an actual drug user?

- Bayes Theorem
 - Example: Drug Testing
 - Employees are either users or non-users

$$X = \{u, n\}$$

• The test is either positive or negative

$$Y = \{\rho, \eta\}$$

• We want to find the probability that an employee is a user given the test is positive. Applying Bayes Theorem:

$$p(u \mid \rho) = \frac{p(\rho \mid u)p(u)}{p(\rho)} = \frac{likelihood \cdot prior}{evidence}$$

- Bayes Theorem
 - Example: Drug Testing
 - Prior: Probability that an individual is a drug user

$$p(u) = 0.005$$

• Likelihood: Probability that a test is positive given an individual is a drug user

$$p(\rho | u) = 0.99$$

• Evidence: Total probability of a positive test result

$$p(\rho) = p(\rho | u)p(u) + p(\rho | n)p(n)$$
$$= (0.99)(0.005) + (0.01)(0.995) = 0.0143$$

- Bayes Theorem
 - Example: Drug Testing
 - Finally, the probability an individual is a drug user given a test is positive

$$p(u \mid \rho) = \frac{p(\rho \mid u)p(u)}{p(\rho)}$$
$$= \frac{(0.99)(0.005)}{(0.0149)} = 0.3322$$

- 33% chance of that positive test result has caught a drug user. That's not a great test!
- Difficulty lies in the large number of non-drug users that are tested
 - Hard to find a needle in the haystack with a low resolution camera.

• Gaussian Distribution (Normal)

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad p(x) \sim N(\mu, \sigma^2)$$

Multivariate Gaussian Distribution (Normal)

$$p(\mathbf{x}) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})} \qquad p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \Sigma)$$

- Properties of Gaussians
 - Linear combinations

$$x \sim N(\mu, \Sigma), \quad y = Ax + B$$

 $y \sim N(A\mu + B, A\Sigma A^T)$

- The result remains Gaussian!
 - Note: exclamation point, because this is somewhat surprising, and does not hold for multiplication, division.
 - Let's take a look

- Demonstration of combination of Gaussians
 - A tale of two univariate Gaussians
 - Define two Gaussians (zero mean)
 - Generate many samples from each distribution (5,000,000)
 - Combine these samples linearly, one sample from each distribution at a time
 - Multiply these samples
 - Divide these samples
 - Create histograms of the resulting samples
 - Take mean and variance of resulting samples
 - Generate Gaussian fit and compare

- Demonstration of combination of Gaussians
 - A tale of two univariate Gaussians

$$f(x) \sim N(0, 0.3^2)$$
 $g(x) \sim N(0, 0.8^2)$

- Demonstration of combination of Gaussians
 - Linear combination

$$0.6f(x) + 0.4g(x) - 1 \sim N(-1, 0.62^2)$$

- Demonstration of combination of Gaussians
 - Product

$$f(x)g(x) \sim N(0,0.48^{2})$$

- Demonstration of combination of Gaussians
 - Quotient

$$f(x)/g(x) \sim N(0,170^2)$$

- Generating multivariate random noise samples
 - Define two distributions, the one of interest and the standard normal distribution

$$\delta \sim N(\mu, \Sigma)$$
 $\omega \sim N(0, I)$

- If the covariance is full rank, it can be diagonalized
 - Symmetry implies positive semi-definiteness

$$\Sigma = E\lambda E^{T}$$

$$= E\lambda^{1/2}I\lambda^{1/2}E^{T}$$

$$= HIH^{T}$$

Can now relate the two distributions (linear identity)

$$\delta \sim N(\mu, HIH^T)$$
$$\delta = \mu + H\omega$$

- To implement this in Matlab for simulation purposes
 - Define μ , \sum
 - Find eigenvalues , λ , and eigenvectors, E of Σ
 - The noise can then be created with

$$\delta = \mu + E\lambda^{1/2} \operatorname{randn}(n,1)$$

$$\Sigma = \begin{bmatrix} 4 & 4 \\ 4 & 8 \end{bmatrix}$$

Confidence ellipses

- Lines of constant probability
 - Found by setting pdf exponent to a constant
 - Principal axes are eigenvectors of covariance
 - Magnitudes depend on eigenvalues of covariance

$$\mu = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4 & 4 \\ 4 & 8 \end{bmatrix}$$

50%, 99% error ellipses Not easily computed, code provided

