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 p(A): Probability that A is true
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 Discrete Random Variable

 X denotes a random variable

 X can take on a countable number of values

 The probability that X takes on a specific value

 A 6-sided die’s discrete probability distribution
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 Continuous Random Variable

 X takes on a value in a continuum

 Probability density function, p(X=x) or p(x)

 Evaluated over finite intervals of the continuum
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 Measures of Distributions

 Mean

 Expected value of a random variable

 Variance

 Measure of the variability of a random variable

 Square root of variance is standard deviation, σ2 = Var(X)
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 Multi-variable distributions

 Vector of random variables

 Mean
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 Multi-variable distributions

 Covariance

 Measure of how much two random variables change 

together

 If Cov(X,Y)>0, when X is above its expected value, then Y 

tends to be above its expected value

 If Cov(X,Y)<0, when X is above its expected value, then Y 

tends to be below its expected value

 If X,Y are independent, Cov(X,Y) = 0
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 Multi-variable distribution

 Covariance Matrix, ∑

 Defines variational relationship between each pair of 

random variables  

 Generalization of variance, diagonal elements represent 

variance of each random variable

 Covariance matrix is symmetric, positive semi-definite
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 Multiplication by a constant matrix yields
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 Addition/Subtraction of random variables

 If X,Y independent, 
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 Joint Probability

 Probability of x and y:

 e.g. probability of clouds and rain today 

 Independence

 If  X,Y are independent, then

 e.g. probability of two heads coin-flips in a row is ¼  

11

PROBABILITY

(  and ) ( , )p X x Y y p x y  

( , ) ( ) ( )p x y p x p y



 Conditional Probability

 Probability of x given y

 Probability of KD for dinner, given a Waterloo engineer is 
cooking 

 Relation to joint probability

 If X and Y are independent,

 Follows from the above 12
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 Law of Total Probability

Discrete Continuous
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 Probability distribution

 It is possible to define a discrete probability 

distribution as a column vector

 The conditional probability can then be a matrix
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 Discrete Random Variable

 And the Law of Total Probabilities becomes

 Note, each column of p(x|y) must sum to 1
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 Bayes Theorem

 From definition of conditional probability

 Bayes Theorem defines how to update one’s beliefs 

about X given a known (new) value of y
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 Bayes Theorem

 If Y is a measurement and X is the current vehicle 

state, Bayes Theorem can be used to update the state 

estimate given a new measurement

 Prior: probabilities that the vehicle is in any of the possible 

states

 Likelihood: probability of getting the measurement that 

occurred given every possible state is the true state

 Evidence: probability of getting the specific measurement 

recorded
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 Bayes Theorem

 Example: Drug testing

 A drug test is 99% sensitive (will correctly 

identify a drug user 99% of the time)

 The drug test is also 99% specific (will 

correctly identify a non-drug user 99% of 

the time

 A company tests its employees, 0.5% of 

whom are drug users

 What’s the probability that a positive test 

result indicates an actual drug user?
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 Bayes Theorem

 Example: Drug Testing

 Employees are either users or non-users

 The test is either positive or negative

 We want to find the probability that an employee is a user 

given the test is positive. Applying Bayes Theorem: 
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 Bayes Theorem

 Example: Drug Testing

 Prior:  Probability that an individual is a drug user

 Likelihood: Probability that a test is positive given an 

individual is a drug user 

 Evidence: Total probability of a positive test result
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 Bayes Theorem

 Example: Drug Testing

 Finally, the probability an individual is a drug user given a 

test is positive

 33% chance of that positive test result has caught a drug 

user. That’s not a great test!

 Difficulty lies in the large number of non-drug users that 

are tested

 Hard to find a needle in the haystack with a low 

resolution camera.
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 Gaussian Distribution (Normal)
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 Multivariate Gaussian Distribution (Normal)
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 Properties of Gaussians

 Linear combinations

 The result remains Gaussian!

 Note: exclamation point, because this is somewhat 

surprising, and does not hold for multiplication, division.

 Let’s take a look
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 Demonstration of combination of Gaussians

 A tale of two univariate Gaussians

 Define two Gaussians (zero mean)

 Generate many samples from each distribution (5,000,000)

 Combine these samples linearly, one sample from each 

distribution at a time

 Multiply these samples

 Divide these samples

 Create histograms of the resulting samples

 Take mean and variance of resulting samples

 Generate Gaussian fit and compare
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 Demonstration of combination of Gaussians

 A tale of two univariate Gaussians
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 Demonstration of combination of Gaussians

 Linear combination
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 Demonstration of combination of Gaussians

 Product
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 Demonstration of combination of Gaussians

 Quotient
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 Generating multivariate random noise samples

 Define two distributions, the one of interest and the 

standard normal distribution

 If the covariance is full rank, it can be diagonalized

 Symmetry implies positive semi-definiteness

 Can now relate the two distributions (linear identity)
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 To implement this in Matlab for simulation 

purposes

 Define μ,∑

 Find eigenvalues , λ, and eigenvectors, E of ∑

 The noise can then be created with
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 Confidence ellipses

 Lines of constant probability 

 Found by setting pdf exponent to a constant 

 Principal axes are eigenvectors of covariance

 Magnitudes depend on eigenvalues of 

covariance
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