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ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 — PROBABILITY

Prof. Steven Waslander



PROBABILITY

o p(A): Probability that A 1s true
0< p(A) <1
pP(True) =1, p(False) =0

P(AvB)=p(A)+p(B)-p(AAB)

A AAB B




PROBABILITY

o Discrete Random Variable
» X denotes a random variable
» X can take on a countable number of values

X e{X,r X, }

LN | n

» The probability that X takes on a specific value
p(X =X;) or p(x;)

» A 6-sided die’s discrete probability distribution

p(x;) n
Z p(Xi) =1

x=123 456




PROBABILITY

Continuous Random Variable
X takes on a value in a continuum
Probability density function, p(X=x) or p(x)
Evaluated over finite intervals of the continuum

p(x & (a,b)) = | P(x)dx

(1) J\/\/\




PROBABILITY

Measures of Distributions
Mean

Expected value of a random variable
u=E [X ]
1= %p(x) discrete case
i=1

y7i :pr(x)dx continuous case

Variance
Measure of the variability of a random variable

Var(X) =E[ (X —u)* |
Var(X) = i(xi — 11)? p(x,) discrete case

Var(X) = j(x — 1)° p(x)dx continuous case

Square root of variance is standard deviation, o = Var(X)



PROBABILITY

Multi-variable distributions
Vector of random variables

_Xl_
X=| :
_xn_
Mean

ty | L E[X, 1]



PROBABILITY

Multi-variable distributions

Covariance
Measure of how much two random variables change
together
Cov(X;, Xj) = E[(X, _/ui)(xj _;Uj)]

= E[Xixj]_:ui:uj

If Cou(X,Y)>0, when X 1s above its expected value, then Y
tends to be above its expected value

If Cov(X,Y)<0, when X is above its expected value, then Y
tends to be below 1ts expected value

If XY are independent, Cov(X,Y) =0



PROBABILITY

Multi-variable distribution
Covariance Matrix, >

Defines variational relationship between each pair of
random variables

Z;;=Cov(X;,X;)

Generalization of variance, diagonal elements represent
variance of each random variable

Cov(X;, X;)=Var(X.)

Covariance matrix is symmetric, positive semi-definite



PROBABILITY

Multiplication by a constant matrix yields

cov(AX) = E[(Ax — Au)(Ax— Au)' ]
= E[A(x—p)(x—p)" A"]

= AE[(Xx— 1) (x =) A’
= Acov(x)A'



PROBABILITY

Addition/Subtraction of random variables

cov(X +Y) = E :((x — 1) (Y = 1)) ((X = ) £ (Y —ﬂy))TJ

= E[(X = ) (X = 1) £(X = )(Y = 1,)

(Y =, )(X =)+ (Y = )Y = p2,)" |
=cov(X)+cov(Y)£2cov(X,Y)

If X,Y independent,

cov(X £Y)=cov(X)+cov(Y)



PROBABILITY

Joint Probability
Probability of x and y:

p(X =xand¥Y =y)=p(x,Yy)

e.g. probability of clouds and rain today

Independence
If X,Y are independent, then

P(X,y) = p(x)p(y)

e.g. probability of two heads coin-flips in a row 1s %



PROBABILITY

Conditional Probability
Probability of x given y

p(X =x]Y =y)=p(x|y)

Probability of KD for dinner, given a Waterloo engineer is
cooking

Relation to joint probability

p(X,y)
p(y)

p(x|y) =
If X and Y are independent,

p(x|y) = p(x)

Follows from the above



PROBABILITY

Law of Total Probability

Discrete Continuous
> . p(x) =1 jp(x)dx=1
p(X) =Y. p(x,y) p(0)= [ p(x, y)dy

p(x) = Z p(x|y)p(y) p(x) = I p(x|y)p(y)dy



PROBABILITY

Probability distribution

It 1s possible to define a discrete probability
distribution as a column vector

I p(X = 1)_
p(X =x) = :

p(X =X,)

The conditional probability can then be a matrix

P 1Y) e (X Yy)
p(x|y)=| - :

p(X, 1Y) o POX )



PROBABILITY

Discrete Random Variable
And the Law of Total Probabilities becomes

p(x)=>_p(x|y)p(y)
= p(x]y)- p(y)

Note, each column of p(x |y) must sum to 1

Z p(X | Y) = Z p(x, y) Relation of joint

X p( y) and conditional
Z 0 ( y X) probabilities
_ X _Py) _4 Total probability

p(y) p(y)



PROBABILITY

Bayes Theorem
From definition of conditional probability

p(X,y) _p(x,y)
oy P00

p(x|y) =
p(x]y)p(y) = p(x,y) = p(y [X)p(X)

Bayes Theorem defines how to update one’s beliefs
about X given a known (new) value of y

p(y|x)p(x) likelihood - prior
p(y) evidence

p(x|y) =



PROBABILITY

Bayes Theorem

If Y 1s a measurement and X is the current vehicle
state, Bayes Theorem can be used to update the state
estimate given a new measurement

Prior: probabilities that the vehicle is in any of the possible
states

Likelihood: probability of getting the measurement that
occurred given every possible state is the true state

Evidence: probability of getting the specific measurement
recorded

p(y|x)p(x) likelihood - prior
p(y) evidence

p(x|y) =



PROBABILITY

Bayes Theorem
Example: Drug testing

o A drug test 1s 99% sensitive (will correctly
1dentify a drug user 99% of the time)

o The drug test is also 99% specific (will
correctly identify a non-drug user 99% of
the time

o A company tests its employees, 0.5% of
whom are drug users

o What’s the probability that a positive test
result indicates an actual drug user?

33%, 66%, 97%, 99% ?7??




PROBABILITY

Bayes Theorem
Example: Drug Testing

Employees are either users or non-users

X ={u,n}

The test 1s either positive or negative

Y ={p.n}

We want to find the probability that an employee 1s a user
given the test 1s positive. Applying Bayes Theorem:

p(o[u)p(u) _ likelihood - prior
pP(p) evidence

p(u|p)=



PROBABILITY

Bayes Theorem
Example: Drug Testing

Prior: Probability that an individual is a drug user

p(u) = 0.005

Likelihood: Probability that a test is positive given an
individual 1s a drug user

p(o|u)=0.99

Evidence: Total probability of a positive test result

p(p) = p(p|u)p(u)+ p(e|n)p(n)
= (0.99)(0.005) + (0.01)(0.995) = 0.0143



PROBABILITY

Bayes Theorem
Example: Drug Testing

Finally, the probability an individual is a drug user given a
test 1s positive

(U] p) - PR 1W)R()

p(o)
_ (0.99)(0.005) _

(0.0149)

33% chance of that positive test result has caught a drug
user. That’s not a great test!

0.3322

Difficulty lies in the large number of non-drug users that
are tested

Hard to find a needle in the haystack with a low
resolution camera.
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Gaussian Distribution (Normal)
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PROBABILITY

Multivariate Gaussian Distribution (Normal)

p(x) ~ N(,%)

(x—n)

(x—p)' =7

1
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PROBABILITY

Properties of Gaussians

Linear combinations

X~N(u,2), y=Ax+B
y ~N(Au+B,AZA")

The result remains Gaussian!

Note: exclamation point, because this 1s somewhat
surprising, and does not hold for multiplication, division.

Let’s take a look



PROBABILITY

Demonstration of combination of Gaussians
A tale of two univariate Gaussians

Define two Gaussians (zero mean)
Generate many samples from each distribution (5,000,000)

Combine these samples linearly, one sample from each
distribution at a time

Multiply these samples

Divide these samples

Create histograms of the resulting samples
Take mean and variance of resulting samples
Generate Gaussian fit and compare



PROBABILITY

Demonstration of combination of Gaussians

A tale of two univariate Gaussians

f(x)~N(0,03)  g(x)~N(0,0.8)

121

08
06
04+

021
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Demonstration of combination of Gaussians

Linear combination

0.6 (X)+0.4g(x) =1~ N(=1,0.62%)

Linear Combination, 0.6f()+0 4g0x)-1

ogl 0 G0 +0 g (x)-1
Zaussian fit

O7r

06

05

04r

03

02

01




PROBABILITY

Demonstration of combination of Gaussians
Product

f(x)g(x) ~ N(0,0.48" 2)

Froduct of Two Gaussians, fix)gix)

fxiala)
ar Zaussian fit
25+
5L
15¢F

UI | l L 1 1
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Demonstration of combination of Gaussians
Quotient

f(x)/g(x)~N(0,170" 2)

Ratio of Two Gaussians, flx)fgix)

05t flxifai)
Gaussian fit

045+
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Generating multivariate random noise samples

Define two distributions, the one of interest and the
standard normal distribution

o~N((u,ZX) @~ N(0,1I)

If the covariance 1s full rank, it can be diagonalized

Symmetry implies positive semi-definiteness
>=EAE'
_ Eﬂ,llz I 11/2 ET
=HIH'

Can now relate the two distributions (linear identity)

S~N(u,HIH")
o=u+Hw



PROBABILITY

To 1implement this in Matlab for simulation
purposes
Define p,>’
Find eigenvalues , A, and eigenvectors, £ of >
The noise can then be created with

S = u+EAY*randn(n,1)

4 4
4 8
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Confidence ellipses

Lines of constant probability
o Found by setting pdf exponent to a constant
o Principal axes are eigenvectors of covariance

o Magnitudes depend on eigenvalues of

covarlance
B 1 . 4 4
“oal *Tla s

50%, 99% error ellipses of
Not easily computed,
code provided

0k



