
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 – OPTIMIZATION

Prof. Steven Waslander

 Optimization Theory
 Unconstrained optimization
 Conditions for optimality
 Convexity
 Complexity
 Constrained Optimization
 Dynamic Programming

2
OUTLINE

 Given a function that maps a vector of variables
to the reals

 Find the minimum (or maximum) values of f(x)

 Difficulty of problem depends on properties of f
 Linear vs Nonlinear
 Convex vs Nonconvex
 Continuous vs Non-smooth vs Disjoint

3

UNCONSTRAINED OPTIMIZATION

: nf  

min ()
nx

f x


 Minima:
 Local minimum :

4

UNCONSTRAINED OPTIMIZATION

* *

There exists an 0 such that
() (), for all with || ||f x f x x x x







  

*x

 Minima:
 Global minimum:

5

UNCONSTRAINED OPTIMIZATION

*() (), for all nf x f x x 

 For differentiable cost functions, can perform Taylor
series expansion to find optimality conditions

 Taylor series of f(x) about x

6

CONDITIONS FOR OPTIMALITY

21
2() () () () . . .T Tf x x f x f x x x f x x H O T         

Courtesy of Wikipedia

 Necessary conditions (NC)
 If x* is a local minimum, difference

between minimum and nearby point
should be non-negative by definition

 Similarly, for a negative step in x, the
difference should be non-negative

7

CONDITIONS FOR OPTIMALITY

* *() () 0f x x f x   

xx

()f x

* *() () 0f x x f x   

 Necessary conditions (NC)
 As Δx->0, higher order terms in

Taylor series disappear

 First order term must satisfy above
for Δx AND –Δx in each element of x

 Necessary condition for optimality

8

CONDITIONS FOR OPTIMALITY

xx

* *() 0 and () 0T Tf x x f x x     

*() 0Tf x 
xx

() () ()Tf x x f x f x x     

 Sufficient conditions
 Of all points that satisfy necessary

conditions for optimality, which ones are
truly local minima?

 For all small excursions from optimal
solution, cost increases
 Since

 This means

 And so the sufficient condition for x* to be a local
minimum is

9

CONDITIONS FOR OPTIMALITY

2 *() is positive definitef x

*() 0Tf x 

21
2() () () 0Tf x x f x x f x x       

 Note that these conditions are only useful if the
gradient and Hessian exist

 Otherwise, resort to initial definition of
optimality and demonstrate directly
 Integer optimization

10

OPTIMALITY CONDITIONS

x N

()f x

 Definition: A set, C, is convex if any two points,
x1, x2, in C can be connected by a line entirely in
C.
 That is, for all Ɵ in [0,1], we have

11

CONVEXITY

1 2(1)x x C   

Convex Nonconvex

 Definition: A function, f(x), is convex if for any
two points, x1, x2, and for all Ɵ in [0,1], we have

12

CONVEXITY

1 2 1 2((1)) () (1) ()f x x f x f x       

Convex Nonconvex

1 2(0.5 0.5)f x x

1 20.5 () 0.5 ()f x f x

1()f x

2()f x

 A convex function has an
epigraph that is a convex set

 Definition: A Convex
Optimization problem is one
where
 f(x) is a convex function
 g(x) is a convex function
 h(x) is an affine function

 This definition ensure the
feasible region is a convex set

 Convex optimization problems
have a unique global minimum! 13

CONVEXITY

Epigraph
of

f(x)

COMPLEXITY ANALYSIS

 (P) – Deterministic Polynomial time algorithm

 (NP) – Non-deterministic Polynomial time
algorithm,
 Feasibility can be determined in polynomial time

 (NP-complete) – NP and at least as hard as
any known NP problem

 (NP-hard) – not provably NP and at least as
hard as any NP problem,
 Optimization over an NP-complete feasibility

problem 14

CONSTRAINED OPTIMIZATION

 Standard form:

 where

 Specific classes of problems, depending on
definitions of X, f, g, h.

 Very specific optimization engines, for every shade
of problem 15

min ()

subject to () 0
() 0

x X
f x

g x
h x






can be any type of set
, , :

X
f g h X 

 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command:
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 “How long do you think it would take to solve a problem
with 1 million variables?”… “One second!”
 Stephen Boyd, Stanford 16

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

f x

Ax b
A x b

 




 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command:
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly

 Matlab toolbox: cvx 17

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

x Qx

Ax b
A x b

 




Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to

find global optimum (local minima can occur)

OPTIMIZATION PROBLEM TYPES
M

E
 780: A

utonom
ous M

obile
R

obotics

18

Mixed Integer Linear Program (MILP)
 (NP-hard) computational complexity

 Exponential growth in complexity
 However, many problems can be solved

surprisingly quickly

MINLP, MILQP etc.

OPTIMIZATION PROBLEM TYPES

min

s.t.

T

x X

eq eq

f x

Ax b
A b






where i rn nX Z 

19

 Dynamic Programming
 Richard Bellman (1953): Principle of Optimality

 Applies to multi-period optimization problems
 Discrete problems sum costs at each time step
 Continuous problem costs are an integral over time interval

20

DYNAMIC PROGRAMMING

If a solution is optimal for periods t0 to tf, then the solution over
any subinterval t1 to tf (t0 <= t1 <= tf) must also be optimal

*
0()x t

*()fx t
*

1()x t

 Discrete time case
 In DP, state is state, inputs are actions
 The sequence of all actions is a policy
 Bellman Equation

 Cost is written as a sum of stage costs

 Expressing the principle of optimality

 Jt+1 is the “cost-to-go” 21

DYNAMIC PROGRAMMING

 1min ()
t

t t t tx
J L x J  

0 0

0

:() min ()
f

f

t

t t t t t
t t

J x L x


 

 Can build optimal solutions by working through
smaller sub-problems

 Discrete time, discrete space methods
 Bottom-up

 Solve trivial final stage problem first, then solve one step
backward at a time

 Results in a complete solution to every possible initial state

 Top-down
 Define a recursive program to solve sub-problems from a

specific starting point
 Sub-problem solutions are recorded and not re-solved
 Results in a complete solution to every possible end state 22

DYNAMIC PROGRAMMING

 Maze: Discrete in time and space
 S = Start, F = Finish

23

EXAMPLE

F

S

 Discrete Maze
 JtF = 0, Actions: Left, Up, Right, Down

24

EXAMPLE

0

?

 Discrete Maze
 Stage Cost Lt=1, step backward in time, filling in cost

to go at each cell that can be reached

25

EXAMPLE

0

1

2

3

4

 Discrete Maze
 Continuing …, bottom yellow cell has two options
 Jt = min(Lt + Jt+1) = min(1+10,1+10) = 11

26

EXAMPLE

0

1

10 2

10 9 3

8 7 6 5 4

9 5

10 6

10 9 8 7

 Discrete Maze
 Continuing

27

EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 12 8 7 6 5 4

9 5

10 6

11 10 9 8 7

 Discrete Maze
 So the cost from start to finish is 24

28

EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 22 12 8 7 6 5 4

22 23 9 5

23 28 10 6

24 25 26 27 11 10 9 8 7

29

EXTRA SLIDES

fT

x1

x2

 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to

equalities, add slack variables
 Jump from one vertex to the next (in a smart way),

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS

30

SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step
 At each iteration,

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2

31

 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of

Lagrangian
 If problem is a quadratic program, apply Newton step

to optimal solution
 If not, use Newton step direction as a descent

direction and apply a line search
 Finding Newton step involves inverse of Hessian

32

SOLUTION METHODS FOR NLPS

SOLUTION METHODS FOR MILPS

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for

current branch
 If solution exceeds upper bound, branch is

terminated
 If solution is integer, replace upper bound on cost

2.Create two branched problems by adding
constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP

3.Repeat until no branches remain, return optimal
solution.

33More details later!

 Constrained minima
 No active constraints = unconstrained
 Active constraints

 Gradient of cost must be perpendicular to active constraint
 Otherwise moving along constraint would reduce cost and

remain feasible
 Can be expressed as

 with Lagrange multiplier λ

34

CONSTRAINED OPTIMIZATION

* * * *(,) (,) 0Tf x y g x y   

 Lagrange Multipliers
 By introducing Lagrange multipliers, can convert

constrained problem to an unconstrained problem

 Can directly apply unconstrained optimization
technique to Lagrangian

 Results in expanded necessary and sufficient
conditions for optimality

 In practice, best optimization algorithms treat
constraints differently 35

CONSTRAINED OPTIMIZATION

() () () ()T TL x f x g x h x   

 Equality Constraints
 Must be active

 Inequality Constraints (Karush, Kuhn, Tucker)
 If active, Lagrange multipliers are non-negative
 If inactive, Lagrange multipliers are zero

 A(x*) is the set of active constraints 36

CONSTRAINED OPTIMIZATION

* * *(, ,) 0xL x   

* 0, 1, ,i i m   
* *0, ()i i A x  

