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 Optimization Theory
 Unconstrained optimization
 Conditions for optimality
 Convexity
 Complexity
 Constrained Optimization
 Dynamic Programming
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OUTLINE



 Given a function that maps a vector of variables 
to the reals

 Find the minimum (or maximum) values of f(x)

 Difficulty of problem depends on properties of f
 Linear vs Nonlinear
 Convex vs Nonconvex
 Continuous vs Non-smooth vs Disjoint
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UNCONSTRAINED OPTIMIZATION
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 Minima:
 Local minimum    : 
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UNCONSTRAINED OPTIMIZATION
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 Minima:
 Global minimum: 
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UNCONSTRAINED OPTIMIZATION

*( ) ( ),  for all nf x f x x 



 For differentiable cost functions, can perform Taylor 
series expansion to find optimality conditions

 Taylor series of f(x) about x
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CONDITIONS FOR OPTIMALITY
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Courtesy of Wikipedia



 Necessary conditions (NC)
 If  x* is a local minimum, difference 

between minimum and nearby point  
should be non-negative by definition

 Similarly, for a negative step in x, the 
difference should be non-negative
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CONDITIONS FOR OPTIMALITY

* *( ) ( ) 0f x x f x   
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 Necessary conditions (NC)
 As Δx->0, higher order terms in 

Taylor series disappear 

 First order term must  satisfy above 
for Δx AND –Δx in each element of x

 Necessary condition for optimality
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CONDITIONS FOR OPTIMALITY

xx
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 Sufficient conditions
 Of all points that satisfy necessary 

conditions for optimality, which ones are 
truly local minima?

 For all small excursions from optimal 
solution, cost increases
 Since 

 This means

 And so the sufficient condition for x* to be a local 
minimum is 
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CONDITIONS FOR OPTIMALITY

2 *( ) is positive definitef x

*( ) 0Tf x 
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 Note that these conditions are only useful if the 
gradient and Hessian exist 

 Otherwise, resort to initial definition of 
optimality and demonstrate directly
 Integer optimization
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OPTIMALITY CONDITIONS

x N

( )f x



 Definition: A set, C, is convex if any two points, 
x1, x2, in C can be connected by a line entirely in 
C.
 That is, for all Ɵ in [0,1], we have
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CONVEXITY

1 2(1 )x x C   

Convex Nonconvex



 Definition: A function, f(x), is convex if for any 
two points, x1, x2, and for all Ɵ in [0,1], we have
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CONVEXITY
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 A convex function has an 
epigraph that is a convex set

 Definition: A Convex 
Optimization problem is one 
where 
 f(x) is a convex function
 g(x) is a convex function
 h(x) is an affine function

 This definition ensure the 
feasible region is a convex set

 Convex optimization problems 
have a unique global minimum! 13

CONVEXITY

Epigraph 
of

f(x)



COMPLEXITY ANALYSIS

 (P) – Deterministic Polynomial time algorithm

 (NP) – Non-deterministic Polynomial time 
algorithm, 
 Feasibility can be determined in polynomial time

 (NP-complete) – NP and at least as hard as 
any known NP problem

 (NP-hard) – not provably NP and at least as 
hard as any NP problem,
 Optimization over an NP-complete feasibility 

problem 14



CONSTRAINED OPTIMIZATION

 Standard form:

 where

 Specific classes of problems, depending on 
definitions of X, f, g, h.

 Very specific optimization engines, for every shade 
of problem 15

min ( )

subject to ( ) 0
( ) 0

x X
f x

g x
h x






can be any type of set
,  ,  :

X
f g h X 



 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command: 
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 “How long do you think it would take to solve a problem 
with 1 million variables?”… “One second!”
 Stephen Boyd, Stanford 16

OPTIMIZATION PROBLEM TYPES
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 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints  O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command: 
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly 

 Matlab toolbox: cvx 17

OPTIMIZATION PROBLEM TYPES
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Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to 

find global optimum (local minima can occur)

OPTIMIZATION PROBLEM TYPES
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Mixed Integer Linear Program (MILP)
 (NP-hard)  computational complexity

 Exponential growth in complexity
 However, many problems can be solved 

surprisingly quickly

MINLP, MILQP etc.

OPTIMIZATION PROBLEM TYPES
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where i rn nX Z 
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 Dynamic Programming
 Richard Bellman (1953): Principle of Optimality

 Applies to multi-period optimization problems
 Discrete problems sum costs at each time step
 Continuous problem costs are an integral over time interval
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DYNAMIC PROGRAMMING

If a solution is optimal for periods t0 to tf, then the solution over 
any subinterval t1 to tf (t0 <= t1 <= tf) must also be optimal

*
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*( )fx t
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1( )x t



 Discrete time case
 In DP, state is state, inputs are actions
 The sequence of all actions is a policy
 Bellman Equation

 Cost is written as a sum of stage costs

 Expressing the principle of optimality

 Jt+1 is the “cost-to-go” 21

DYNAMIC PROGRAMMING
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 Can build optimal solutions by working through 
smaller sub-problems

 Discrete time, discrete space methods
 Bottom-up

 Solve trivial final stage problem first, then solve one step 
backward at a time

 Results in a complete solution to every possible initial state

 Top-down
 Define a recursive program to solve sub-problems from a 

specific starting point
 Sub-problem solutions are recorded and not re-solved
 Results in a complete solution to every possible end state 22

DYNAMIC PROGRAMMING



 Maze: Discrete in time and space
 S = Start, F = Finish
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EXAMPLE

F

S



 Discrete Maze
 JtF = 0, Actions: Left, Up, Right, Down
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EXAMPLE

0

?



 Discrete Maze
 Stage Cost Lt=1, step backward in time, filling in cost 

to go at each cell that can be reached
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EXAMPLE

0

1

2

3

4



 Discrete Maze
 Continuing …, bottom yellow cell has two options
 Jt = min(Lt + Jt+1) = min(1+10,1+10) = 11
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EXAMPLE

0

1

10 2

10 9 3

8 7 6 5 4

9 5

10 6

10 9 8 7



 Discrete Maze
 Continuing
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EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 12 8 7 6 5 4

9 5

10 6

11 10 9 8 7



 Discrete Maze
 So the cost from start to finish is 24 
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EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 22 12 8 7 6 5 4

22 23 9 5

23 28 10 6

24 25 26 27 11 10 9 8 7
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EXTRA SLIDES



fT

x1

x2

 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to 

equalities, add slack variables
 Jump from one vertex to the next (in a smart way), 

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS

30



SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step
 At each iteration, 

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2
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 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of 

Lagrangian
 If problem is a quadratic program, apply Newton step 

to optimal solution
 If not, use Newton step direction as a descent 

direction and apply a line search
 Finding Newton step involves inverse of Hessian
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SOLUTION METHODS FOR NLPS



SOLUTION METHODS FOR MILPS

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for 

current branch
 If solution exceeds upper bound, branch is 

terminated
 If solution is integer, replace upper bound on cost

2.Create two branched problems by adding 
constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP 

3.Repeat until no branches remain, return optimal 
solution.

33More details later!



 Constrained minima
 No active constraints = unconstrained
 Active constraints

 Gradient of cost must be perpendicular to active constraint
 Otherwise moving along constraint would reduce cost and 

remain feasible
 Can be expressed as

 with Lagrange multiplier λ
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CONSTRAINED OPTIMIZATION

* * * *( , ) ( , ) 0Tf x y g x y   



 Lagrange Multipliers
 By introducing Lagrange multipliers, can convert 

constrained problem to an unconstrained problem

 Can directly apply unconstrained optimization 
technique to Lagrangian

 Results in expanded necessary and sufficient 
conditions for optimality 

 In practice, best optimization algorithms treat 
constraints differently 35

CONSTRAINED OPTIMIZATION
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 Equality Constraints
 Must be active

 Inequality Constraints (Karush, Kuhn, Tucker)
 If active, Lagrange multipliers are non-negative
 If inactive, Lagrange multipliers are zero

 A(x*) is the set of active constraints 36

CONSTRAINED OPTIMIZATION
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