

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 – OPTIMIZATION

Prof. Steven Waslander

OUTLINE

- Optimization Theory
 - Unconstrained optimization
 - Conditions for optimality
 - Convexity
 - Complexity
 - Constrained Optimization
 - Dynamic Programming

• Given a function that maps a vector of variables to the reals

$$f:\mathbb{R}^n\to\mathbb{R}$$

• Find the minimum (or maximum) values of f(x)

$$\min_{x \in \mathbb{R}^n} f(x)$$

- Difficulty of problem depends on properties of *f*
 - Linear vs Nonlinear
 - Convex vs Nonconvex
 - Continuous vs Non-smooth vs Disjoint

• Minima:

• Local minimum x^* :

There exists an $\varepsilon > 0$ such that

$$f(x^*) \le f(x)$$
, for all x with $||x - x^*|| < \varepsilon$

• Minima:

• Global minimum:

$$f(x^*) \le f(x)$$
, for all $x \in \Re^n$

- For differentiable cost functions, can perform Taylor series expansion to find optimality conditions
 - Taylor series of f(x) about x

$$f(x + \Delta x) = f(x) + \nabla f(x)^{T} \Delta x + \frac{1}{2} \Delta x^{T} \nabla^{2} f(x) \Delta x + H.O.T.$$

- Necessary conditions (NC)
 - If x^* is a local minimum, difference between minimum and nearby point should be non-negative by definition

$$f(x^* + \Delta x) - f(x^*) \ge 0$$

• Similarly, for a negative step in x, the difference should be non-negative

- Necessary conditions (NC)
 - As $\Delta x > 0$, higher order terms in Taylor series disappear

$$f(x + \Delta x) - f(x) \approx \nabla f(x)^T \Delta x$$

• First order term must satisfy above for Δx AND $-\Delta x$ in each element of x

$$\nabla f(x^*)^T \Delta x \ge 0$$
 and $\nabla f(x^*)^T \Delta x \le 0$

Necessary condition for optimality

$$\nabla f(x^*)^T = 0$$

- Sufficient conditions
 - Of all points that satisfy necessary conditions for optimality, which ones are truly local minima?
 - For all small excursions from optimal solution, cost increases

This means

$$f(x + \Delta x) - f(x) \approx \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x > 0$$

• And so the sufficient condition for x^* to be a local minimum is

$$\nabla^2 f(x^*)$$
 is positive definite

OPTIMALITY CONDITIONS

- Note that these conditions are only useful if the gradient and Hessian exist
- Otherwise, resort to initial definition of optimality and demonstrate directly
 - Integer optimization

CONVEXITY

- Definition: A set, C, is convex if any two points, x_1 , x_2 , in C can be connected by a line entirely in C.
 - That is, for all Θ in [0,1], we have

$$\theta x_1 + (1 - \theta) x_2 \in C$$

Nonconvex

CONVEXITY

• Definition: A function, f(x), is convex if for any two points, x_1 , x_2 , and for all θ in [0,1], we have

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$

$$0.5f(x_1) + 0.5f(x_2)$$

$$f(0.5x_1 + 0.5x_2)$$

Convex

Nonconvex

CONVEXITY

- A convex function has an epigraph that is a convex set
- Definition: A Convex Optimization problem is one where
 - f(x) is a convex function
 - g(x) is a convex function
 - h(x) is an affine function
- This definition ensure the feasible region is a convex set
- Convex optimization problems have a unique global minimum!

COMPLEXITY ANALYSIS

- (P) Deterministic Polynomial time algorithm
- (NP) Non-deterministic Polynomial time algorithm,
 - Feasibility can be determined in polynomial time
- (NP-complete) NP and at least as hard as any known NP problem
- (NP-hard) not provably NP and at least as hard as any NP problem,
 - Optimization over an **NP-complete** feasibility problem

• Standard form:

$$\min_{x \in X} f(x)$$
subject to
$$g(x) \le 0$$

$$h(x) = 0$$

• where

X can be any type of set

$$f, g, h: X \to \mathbb{R}$$

- Specific classes of problems, depending on definitions of X, f, g, h.
- Very specific optimization engines, for every shade of problem

- Linear Program (LP)
 - (P) Easy, fast to solve, convex

$$\min_{x \in X \subseteq \mathfrak{R}^n} f^T x$$

$$Ax \le b$$
s.t.
$$A_{eq} x = b_{eq}$$

Matlab command:

```
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)
```

- "How long do you think it would take to solve a problem with 1 million variables?"... "One second!"
 - o Stephen Boyd, Stanford

- Quadratic Program (QP)
 - (P) Quadratic cost with linear constraints O(n³)
 - Still fairly easy, fast to solve and convex

$$\min_{x \in X \subseteq \mathbb{R}^n} x^T Q x$$
s.t.
$$Ax \le b$$

$$A_{eq} x = b_{eq}$$

Matlab command:

```
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)
```

- Kalman filter, LQR (unconstrained)
- In fact, any convex problem can be solved quickly
 - Matlab toolbox: cvx

- Non-Linear Program (NLP)
 - (P) Convex problems are easy to solve
 - Non-convex problems harder, not guaranteed to find global optimum (local minima can occur)

$$egin{array}{ll} \min_{x\in\mathbb{R}^n} & f(x) \ \mathrm{s.t.} & g(x) \leq 0 \ h(x) = 0 \ \end{array}$$
 where, $f,g,h:\mathbb{R}^n o \mathbb{R}$

- Mixed Integer Linear Program (MILP)
 - (NP-hard) computational complexity

$$\min_{x \in X} f^{T}x$$

$$Ax \leq b$$
s.t.
$$A_{eq} = b_{eq}$$
where $X \subseteq Z^{n_i} \times \Re^{n_r}$

- Exponential growth in complexity
- However, many problems can be solved surprisingly quickly
- MINLP, MILQP etc.

Dynamic Programming

- Dynamic Programming
 - Richard Bellman (1953): Principle of Optimality
 - Applies to multi-period optimization problems
 - Discrete problems sum costs at each time step
 - o Continuous problem costs are an integral over time interval

If a solution is optimal for periods t_0 to t_f , then the solution over any subinterval t_1 to t_f ($t_0 \le t_1 \le t_f$) must also be optimal

Dynamic Programming

- Discrete time case
 - In DP, state is state, inputs are actions
 - The sequence of all actions is a policy
 - Bellman Equation
 - Cost is written as a sum of stage costs

$$J_{t_0}(x_{t_0:t_f}) = \min \sum_{t=t_0}^{t_f} L_t(x_t)$$

• Expressing the principle of optimality

$$J_{t} = \min_{x_{t}} \left[L_{t}(x_{t}) + J_{t+1} \right]$$

 \circ J_{t+1} is the "cost-to-go"

Dynamic Programming

- Can build optimal solutions by working through smaller sub-problems
- Discrete time, discrete space methods
 - Bottom-up
 - Solve trivial final stage problem first, then solve one step backward at a time
 - Results in a complete solution to every possible initial state
 - Top-down
 - Define a recursive program to solve sub-problems from a specific starting point
 - Sub-problem solutions are recorded and not re-solved
 - Results in a complete solution to every possible end state

- Maze: Discrete in time and space
 - S = Start, F = Finish

- Discrete Maze
 - $J_{tF} = 0$, Actions: Left, Up, Right, Down

- Discrete Maze
 - Stage Cost L_t =1, step backward in time, filling in cost to go at each cell that can be reached

- o Discrete Maze
 - Continuing ..., bottom yellow cell has two options
 - $J_t = \min(L_t + J_{t+1}) = \min(1+10,1+10) = 11$

							0
							1
			10				2
		10	9				3
			8	7	6	5	4
			9				5
			10				6
				10	9	8	7

- o Discrete Maze
 - Continuing

	18		14	13	12	13	14		0
18	17	16	15		11		15		1
19					10				2
20	21		11	10	9				3
21			12		8	7	6	5	4
					9				5
					10				6
					11	10	9	8	7

- o Discrete Maze
 - So the cost from start to finish is 24

	18		14	13	12	13	14		0
18	17	16	15		11		15		1
19					10				2
20	21		11	10	9				3
21	22		12		8	7	6	5	4
22	23				9				5
23			28		10				6
24	25	26	27		11	10	9	8	7

EXTRA SLIDES

SOLUTION METHODS FOR LINEAR PROGRAMS

Simplex Method

- Optimum must be at the intersection of constraints
- Intersections are easy to find, change inequalities to equalities, add slack variables
- Jump from one vertex to the next (in a smart way), until no more improvement is possible

SOLUTION METHOD FOR LINEAR PROGRAMS

Interior Point Methods

Apply Barrier Function to each constraint and sum

Primal-Dual Formulation

Newton Step

 At each iteration, increase slope of barriers

Benefits

- Scales better than Simplex
- Certificate of Optimality
 - Stop whenever
 - Know how close to optimal the current solution is
 - Relies on duality

31

SOLUTION METHODS FOR NLPS

- Sequential Quadratic Programming
 - Also an interior point method
 - At each iteration, calculate gradient and Hessian of Lagrangian
 - If problem is a quadratic program, apply Newton step to optimal solution
 - If not, use Newton step direction as a descent direction and apply a line search
 - Finding Newton step involves inverse of Hessian

SOLUTION METHODS FOR MILPS

- Branch and Bound Algorithm
 - 1. Solve LP relaxation for lower bound on cost for current branch
 - If solution exceeds upper bound, branch is terminated
 - If solution is integer, replace upper bound on cost
 - 2. Create two branched problems by adding constraints to original problem
 - Select integer variable with fractional LP solution
 - Add integer constraints to the original LP
 - 3. Repeat until no branches remain, return optimal solution.

- Constrained minima
 - No active constraints = unconstrained
 - Active constraints
 - Gradient of cost must be perpendicular to active constraint
 - Otherwise moving along constraint would reduce cost and remain feasible
 - Can be expressed as $\nabla f(x^*, y^*) + \lambda^T \nabla g(x^*, y^*) = 0$
 - ullet with Lagrange multiplier λ

- Lagrange Multipliers
 - By introducing Lagrange multipliers, can convert constrained problem to an unconstrained problem
 - Can directly apply unconstrained optimization technique to Lagrangian

$$L(x) = f(x) + \lambda^{T} g(x) + \mu^{T} h(x)$$

- Results in expanded necessary and sufficient conditions for optimality
- In practice, best optimization algorithms treat constraints differently

- Equality Constraints
 - Must be active
- Inequality Constraints (Karush, Kuhn, Tucker)
 - If active, Lagrange multipliers are non-negative
 - If inactive, Lagrange multipliers are zero

$$\nabla_{x}L(x^{*},\lambda^{*},\mu^{*}) = 0$$

$$\lambda_{i}^{*} \geq 0, i = 1,...,m$$

$$\lambda_{i}^{*} = 0, i \notin A(x^{*})$$

• $A(x^*)$ is the set of active constraints