ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 — OPTIMIZATION

Prof. Steven Waslander




OUTLINE

Optimization Theory
Unconstrained optimization
Conditions for optimality
Convexity
Complexity
Constrained Optimization

Dynamic Programming



UNCONSTRAINED OPTIMIZATION

Given a function that maps a vector of variables

to the reals
f:R" >R

Find the minimum (or maximum) values of f(x)

min f(X)

xeR"

Difficulty of problem depends on properties of f
Linear vs Nonlinear
Convex vs Nonconvex
Continuous vs Non-smooth vs Disjoint



UNCONSTRAINED OPTIMIZATION
Minima;
Local minimum X :
There exists an & > 0 such that
f (X*) < f(x), for all X with || X — X < &
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UNCONSTRAINED OPTIMIZATION

o Minima:

» Global minimum:

f(x")< f(x), forall x e R"
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CONDITIONS FOR OPTIMALITY

For differentiable cost functions, can perform Taylor
series expansion to find optimality conditions

Taylor series of f(x) about x
f(x+AX)= f(X)+VF(X)' AX+1AX"V? f(X)Ax+H.O.T.
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Courtesy of Wikipedia



CONDITIONS FOR OPTIMALITY

Necessary conditions (NC)

If x"1s a local minimum, difference
between minimum and nearby point
should be non-negative by definition

f(X"+Ax)— f(x) >0

Similarly, for a negative step in x, the
difference should be non-negative

f(xX" —AX)— f(x)>0




CONDITIONS FOR OPTIMALITY

Necessary conditions (NC)
As Ax->0, higher order terms in

Taylor series disappear
o) M
f (x+AX)— f(X) = VF(X)" AX IR
—AX | AX
First order term must satisfy above
for Ax AND —Ax in each element of x
VE(x) Ax>0and Vf(x')' AX<0
B -
Necessary condition for optimality <>
—AX | AX

VE(x) =0



CONDITIONS FOR OPTIMALITY

Sufficient conditions

Of all points that satisfy necessary
conditions for optimality, which ones are
truly local minima?

For all small excursions from optimal
solution, cost increases

Vi(x)' =0

Since

This means

f(X+AX)— f(X)=LAX' 'V f(X)AX >0

And so the sufficient condition for x* to be a local
minimum 18

V? f(x") is positive definite




OPTIMALITY CONDITIONS

Note that these conditions are only useful if the
ogradient and Hessian exist

Otherwise, resort to initial definition of
optimality and demonstrate directly

Integer optimization

f(x) 4 °
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CONVEXITY

o Definition: A set, C, 1s convex if any two points,
X4, X9, In C can be connected by a line entirely in

C.
» That 1is, for all © in [0,1], we have

ox,+(1-0)x,eC

Convex Nonconvex




CONVEXITY

Definition: A function, f(x), is convex if for any
two points, x4, X,, and for all © in [0,1], we have

f(OX, +(1-0)x)<0f(x)+(1-60)T(X,)

0.5f(x)+0.5f(x,)

o]

f(x,) /

f(0.5x, +0.5x,)

Convex Nonconvex



CONVEXITY

A convex function has an

epigraph that 1s a convex set Epig?aph
0
f(x)

Definition: A Convex
Optimization problem is one
where

f(x) 1s a convex function

g(x) 1s a convex function

h(x) is an affine function

This definition ensure the
feasible region is a convex set

Convex optimization problems
have a unique global minimum!




COMPLEXITY ANALYSIS
(P) — Deterministic Polynomial time algorithm

(NP) — Non-deterministic Polynomial time
algorithm,
Feasibility can be determined in polynomial time

(NP-complete) — NP and at least as hard as
any known NP problem

(NP-hard) — not provably NP and at least as
hard as any NP problem,

Optimization over an NP-complete feasibility
problem



CONSTRAINED OPTIMIZATION

Standard form:

min f(X)

xeX

subjectto g(x)<0
h(x)=0

where

X can be any type of set
f,g,h: X >R

Specific classes of problems, depending on
definitions of X, f, g, h.

Very specific optimization engines, for every shade
of problem



OPTIMIZATION PROBLEM TYPES
Linear Program (LP)

o (P) Easy, fast to solve, convex

min fTx
xeX cR"
Ax<Db
S.t.
Aeqx = beq

Matlab command:
x = hinprog(f, A, b, Aeq, beq, LB, UB, x0)

“How long do you think it would take to solve a problem
with 1 million variables?”... “One second!”

o Stephen Boyd, Stanford



OPTIMIZATION PROBLEM TYPES
Quadratic Program (QP)

o (P) Quadratic cost with linear constraints O(n?)
Still fairly easy, fast to solve and convex

min X' QX
xeX cR"
Ax<h
S.t.
Aeqx = beq

Matlab command:
X = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

Kalman filter, LQR (unconstrained)

In fact, any convex problem can be solved quickly
o Matlab toolbox: cvx



OPTIMIZATION PROBLEM TYPES
Non-Linear Program (NLP)

(P) Convex problems are easy to solve

Non-convex problems harder, not guaranteed to
find global optimum (local minima can occur)

min f(x)
rER"M
s.t. g(xz) <0

h(x) =0
where, f,g,h: R" - R




OPTIMIZATION PROBLEM TYPES

Mixed Integer Linear Program (MILP)
(NP-hard) computational complexity

min fTx
xeX
Ax<b

Ay = beq
where X < Z" xR™

S.1.

Exponential growth in complexity

However, many problems can be solved
surprisingly quickly

MINLP, MILQP etc.



DYNAMIC PROGRAMMING

Dynamic Programming
Richard Bellman (1953): Principle of Optimality

Applies to multi-period optimization problems
Discrete problems sum costs at each time step
Continuous problem costs are an integral over time interval

If a solution is optimal for periods ¢, to ¢, then the solution over
any subinterval ¢; to ¢, ({, <= t; <=, must also be optimal

X (t;)

X'(t,) ®



DYNAMIC PROGRAMMING

Discrete time case
In DP, state 1s state, inputs are actions
The sequence of all actions 1s a policy
Bellman Equation

Cost 1s written as a sum of stage costs

3, (%) =min Y L (x)

Expressing the principle of optimality
Ji = n}(ln[l—t(xt) + ‘Jt+1]
t

J,.; 1s the “cost-to-go”



DYNAMIC PROGRAMMING

Can build optimal solutions by working through
smaller sub-problems

Discrete time, discrete space methods
Bottom-up

Solve trivial final stage problem first, then solve one step
backward at a time

Results in a complete solution to every possible initial state

Top-down

Define a recursive program to solve sub-problems from a
specific starting point

Sub-problem solutions are recorded and not re-solved
Results in a complete solution to every possible end state



EXAMPLE

Maze: Discrete in time and space
S = Start, F = Finish




EXAMPLE

Discrete Maze
J,r= 0, Actions: Left, Up, Right, Down




EXAMPLE

Discrete Maze

Stage Cost L,=1, step backward in time, filling in cost
to go at each cell that can be reached




EXAMPLE

Discrete Maze

Continuing ..., bottom yellow cell has two options
J,=min(L, +J,,;) = min(1+10,1+10) = 11




EXAMPLE

Discrete Maze

Continuing




EXAMPLE

Discrete Maze
So the cost from start to finish 1s 24




EXTRA SLIDES




SOLUTION METHODS FOR LINEAR PROGRAMS

Simplex Method

Optimum must be at the intersection of constraints

Intersections are easy to find, change 1nequalities to
equalities, add slack variables

Jump from one vertex to the next (in a smart way),
until no more improvement is possible

s S

A
v




SOLUTION METHOD FOR LINEAR PROGRAMS

Interior Point Methods
Apply Barrier Function to each constraint and sum
Primal-Dual Formulation
Newton Step

At each iteration, o

increase slope of barriers °

Benefits
Scales better than Simplex /

Certificate of Optimality
Stop whenever

Know how close to optimal

the current solution 1s /\

Relies on duality



SOLUTION METHODS FOR NLPS

Sequential Quadratic Programming
Also an interior point method

At each iteration, calculate gradient and Hessian of
Lagrangian

If problem 1s a quadratic program, apply Newton step
to optimal solution

If not, use Newton step direction as a descent
direction and apply a line search

Finding Newton step involves inverse of Hessian

A




SOLUTION METHODS FOR MILPS
Branch and Bound Algorithm

1. Solve LP relaxation for lower bound on cost for
current branch

If solution exceeds upper bound, branch is
terminated

If solution 1s integer, replace upper bound on cost

2. Create two branched problems by adding
constraints to original problem

Select integer variable with fractional LP solution
Add integer constraints to the original LLP

3.Repeat until no branches remain, return optimal
solution.




CONSTRAINED OPTIMIZATION

Constrained minima
No active constraints = unconstrained

Active constraints
o Gradient of cost must be perpendicular to active constraint

Otherwise moving along constraint would reduce cost and
remain feasible

o Can be expressed as VT (X*, y*) + lTVg(X*, y*) =(
with Lagrange multiplier A
y

A

——————
’’’’

/ ftxy) = d} ’
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CONSTRAINED OPTIMIZATION

Lagrange Multipliers

By introducing Lagrange multipliers, can convert
constrained problem to an unconstrained problem

Can directly apply unconstrained optimization
technique to Lagrangian

L(x)= f(x)+2"g(x) + u'h(x)

Results in expanded necessary and sufficient
conditions for optimality

In practice, best optimization algorithms treat
constraints differently



CONSTRAINED OPTIMIZATION

Equality Constraints

Must be active

Inequality Constraints (Karush, Kuhn, Tucker)
If active, Lagrange multipliers are non-negative
If inactive, Lagrange multipliers are zero

V. L(X', A1) =0
A >0,i=1,...,m

25 =0, i¢AX)

A(x") is the set of active constraints



