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ME597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 — LINEAR SYSTEMS
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LINEAR ALGEBRA

Scalar, Vector, Matrix
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Fat matrix: n<m, Skinny matrix: n>m

Unit Vector, Identity Matrix
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LINEAR ALGEBRA

Matrix Transpose

_An A21
A= A,

Matrix Addition

I All + Bll A12 + BlZ
AtB=| A, +B,, R

Matrix Multiplication

D AB. D AB;
AB = ZAZiBil -




LINEAR ALGEBRA

Matrix Transpose of Added Matrices

(A+B) =A' +B'

Matrix Transpose of Multiplied Matrices
(AB)' =B' A’

Quadratic form

(AX+b) (Ax+b)=x"A"Ax+x"A'b+b" Ax+Db'b
=X A"Ax+2x ' A'b+b'b

= X' Cx+d" ' x+e

Quadratic term



LINEAR ALGEBRA

Matrix Rank: o(A)

The number of independent rows or columns
Nonsingular = Full Rank

o(A) =min(n,m)
Singular = Not full rank

o(A)<min(n,m)

Non-empty nullspace

3 X such that Ax =0

Matrix Inverse (square A)
AA = ATA=|

Nonsingular and square <=> Invertible



LINEAR ALGEBRA

Matrix Trace

tr(A) = Z A
Symmetric Matrix
A A,
A=A"=|A, .

Positive Definiteness (Semi-Definiteness)
For a symmetric nXn matrix A, and for any x in R”

X" AX >0 (x' Ax >0)



LINEAR ALGEBRA

Eigenvalues and Eigenvectors of a matrix

For a matrix A, the vector x 1s an eigenvector of A
with a corresponding eigenvalue A if they satisfy the
equation

AX = AX

The eigenvalues of a diagonal matrix are its diagonal
elements

The inverse of A exists if and only if (iff) none of the
elgenvalues are zero

Positive definite A has all eigenvalues greater than zero



LINEAR ALGEBRA

Differentiation of linear matrix equation

d

&(AX) — A

d

&(XT A) —_ AT

Differentiation of a quadratic matrix equation

%(XT Ax) =x' A+ x' A



LINEAR ALGEBRA

Least Squares Solution

If A 1s a skinny matrix (n>m), and we wish to find x

for which
Ax=Db

Since A is skinny, the problem is over-constrained
No solution exists

Instead, minimize the square of the error between Ax

and b
min | Ax—Db|}
= mxin(Ax—b)T (Ax—b)
= min X' A"Ax—2b" Ax+Db'b



LINEAR ALGEBRA

Setting the derivative to zero

2x'ATA-2b"A=0

ATAx = ATb
x:(ATA)‘1 ATh
X = A"b

Known as the pseudo-inverse

This methodology is used over and over in the course

Quadratic cost minimized to find closed form solution



LINEAR ALGEBRA

12r

Least Squares example

Given a function of interest
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Data fitting with polynomialsoa_

Function
©  Measurements

And a set of measurements b(¢,,)of that function at points ¢,

b(t ), t ={-1,-0.99,...1}

Find the best polynomial fit for polynomial f5(¢) of order P

fo(t) =X +Xt+...+ X, ,t"°



LINEAR ALGEBRA

Least Squares example

Can formulate this as a least squares problem where
we want to minimize the mean square error between
polynomaial prediction and measurement at each ¢, :

min | o (t,) = b(t,) I

The polynomial can be written as

fo(t )=At IX=X +Xt +...+X, t°

1t t -t X,
1t t2 ...t X
At)=|. 2 7 ? x=| "’
1t € 1

Use least squares solution method to find coefficients of f.
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SISO CONTROL

One input, one output, one transfer function between

the two

Controller

E
R(s) (s) KG.(5)

U(s)

Plant

1

G,(s)

Closed loop
transfer
Y (s) function

Model requires

Y(s) _
@—T(S)

transfer function from single input to single output

1nitial conditions to start from (usually assumed 0)

Model hides inner workings of plant



STATE SPACE: A NEW SYSTEM MODEL

Multi-Input-Multi-Output (MIMO) model, maintains
complete plant picture

Matrix and vector notation, use power of linear algebra for
many key results

Definition: The state of a system is a vector of system
variables that entirely defines the system at a specific
instance in time.

Example: at t=0, initial conditions define a state vector.

Entire history of state variables can be discarded, only
need current state and system dynamics to continue
forward in time.



STANDARD FORM DYNAMICS

Linear first order time-invariant dynamics in
continuous time

Update equation
%(t) = AX(t) + Bu(t)

Measurement equation

y(t) = Cx(t) + Du(t)
A, B matrices: state derivatives can depend on any state or

input variable

C, D matrices: output can depend on any state or input
variable



STANDARD FORM DYNAMICS

Linear first order time-invariant dynamics in discrete
time

Update equation, timesteps indexed by t
X, = AX,_, + Bu,
Measurement equation
y, = CXx, + Du,
A, B matrices: state update can depend on any state or
input variable

C, D matrices: measurements can depend on any state or
input variable



EXAMPLE — SPRING MASS DAMPER

k

2(1)

Equation of Motion

mZ(t) + bz(t) + kz(t) = f (t) b N LU

Transfer function

Z(s) 1
F(s) ms®+bs+k

Four variables in ODE: one input, one variable
defined by ODE, two states remain.

(o [XO]_[20

X (1) ] [2(T)_




|—> 2(t)

EXAMPLE CONTD

f@)

Motion Model
0 1° 0
2(t) | z(t)
{z’(t)} ~ b L‘(t)}+ 1|10
m m . m

%(t) = AX(t) + Bu(t)

Measurement model: position and velocity sensors

oo Sl e
y,(t)] |0 1][z(t)] |O

y = Cx(t) + Du(t)



IN TRANSFER FUNCTION FORM

Take Laplace transform of update equation

% = Ax(t) +Bu(t) == sX(s)—x(0)=AX(s)+BU(s)

Solve for X(s), with x(0)=0

(sl —A)X(s)=BU(s)
X (s)= (sl —A)7BU(s)

Combine with measurement model
Y(s)=CX(s)+ DU(s)
Y (S)
U (s)

=C(sl —=A) B+D



BLOCK DIAGRAM

Continuous LTI State space model as a block
diagram (Laplace Domain)
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U(s)




EXAMPLE: FIND TFES

Y (s)

U (s)

Y(s) _
U(s)

Y(s) _
U(s)

1o lo 1ol
, B=| |,C= D=
1 0 1 0
C(sl —A)'B
. _
1 0fl|s O 0 1
0 11(/|0 s & b
\ 'm m
T 1 N
10 S 1 0
0 1 LS s+B 1
\Lm ml) Lm

—> 2(t)

f®




EXAMPLE: FIND TFES

- _ |—>Z(t)
s+R 1(([0 ] k
Y(s): 1 0 1 m 1 f@©
U(s) [0 1]det(sl-A)|| —k |||~ b m —
. M -M-
_ 1 _
_ _ m
: LN
Y(s) |det(sl-A)| m.  m
U (s) S B
det(sl — A) m
i i : "
S°+—S+—
m m

So roots of det(:SI-A) determine poles of open loop system
Well known equation in linear algebra: eigenvalues/eigenvectors

Open loop poles are eigenvalues of A
Holds for all sizes of A, not just 2X2



STATE FEEDBACK CONTROL

If C=1and D =0, full state feedback

More than one signal, in fact everything we could possibly

need
u(t) = —Kx(t)
Assume R(s) = 0 (regulator)

______________________________________

i D i
R(S) E(s) U(S)i N sX (s) - X (s) J i Y (s)
%-I-QH K ' B - C — T >

_ : + S + |
Controller : !
I A !




STATE FEEDBACK

Closed loop transfer function

X(8) _ (sl — A+ BK)

R(s)
Now, eigenvalues of A-BK are poles of closed loop
system

In fact, since there 1s one K for every eigenvalue,
we can place the closed loop poles anywhere we’'d

like.



EXAMPLE: POLE PLACEMENT

Lets place closed loop poles at S=-5+5]

Note: 0 0 0
BK=|1 |[K, K]=|K, K, 200
m m m K
Match coefficients of polynomials f )
B M —

Desired = actual

S -1

s? +10s +50 = det| | k K, b K,
—+—+ S+—+—2
m m m m |

) (KZ bj (Kl kj
=S"+| —E+—|s+| L+—
m m m m




EXAMPLE: CONTROLLER

What 1s full state feedback?
u(t) = K,z(t) + K,z(t)
PD control

To add integral control, add an
Integrator state

X(t) =

_I zdt
4
Z

S|l o o

— Z(t)

f(0)




CONTROLLABILITY

Can I get there from here?

A system 1s controllable if for any set of initial and
final states, x(0) and x(7), there exists a control input
sequence, u(0) to u(7), to get from x(0) to x(7).

Can be checked easily: The following matrix must be
full rank

rank([B AB AR ... AHB])zn



OBSERVABILITY

Can I see there from here?

Given any sequence of states x(0) to x(7), inputs u(0)
to u(7) and outputs y(0) to y(7), a system 1s
observable if the state can be uniquely determined
from the outputs alone.

Again, an easy check on the observability matrix
determines if a system is observable

C
CA

rank| | CA®> ||=n

CAn—l



OPTIMAL CONTROL

Since we can place poles anywhere, can change
objective of control design

Minimize quadratic errors in states and
quadratic use of inputs

min j; X" (£)Ox(z) +u" ()Ru(z)dz

Penalize big deviations more heavily that small ones

Quadratic cost and linear dynamics result in a time
Iinvariant control law, another way to set the gains
for state feedback control



OPTIMAL ESTIMATION

The second half of the model describes the relationship
between the state and the measured outputs.

Any sensor dynamics must be included in the state

In reality, both disturbances and noise will exist
X(t) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + v(t)

Assume w, v are Gaussian white noise with covariance Q,

R

Assume u(t) 1s known exactly

Formulate minimum mean squared error estimation
problem, results in Kalman filter



STATE SPACE MODEL
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