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 Scalar, Vector, Matrix

 Fat matrix: n<m, Skinny matrix: n>m

 Unit Vector, Identity Matrix
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 Matrix Transpose

 Matrix Addition

 Matrix Multiplication
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 Matrix Transpose of Added Matrices

 Matrix Transpose of Multiplied Matrices

 Quadratic form
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 Matrix Rank:
 The number of independent rows or columns
 Nonsingular = Full Rank

 Singular = Not full rank

 Non-empty nullspace

 Matrix Inverse (square A)

 Nonsingular and square <=> Invertible
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LINEAR ALGEBRA
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 Matrix Trace

 Symmetric Matrix

 Positive Definiteness (Semi-Definiteness)
 For a symmetric nXn matrix A, and for any x in Rn
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LINEAR ALGEBRA
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 Eigenvalues and Eigenvectors of a matrix
 For a matrix A, the vector x is an eigenvector of A 

with a corresponding eigenvalue λ if they satisfy the 
equation

 The eigenvalues of a diagonal matrix are its diagonal 
elements 

 The inverse of A exists if and only if (iff) none of the 
eigenvalues are zero

 Positive definite A has all eigenvalues greater than zero
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LINEAR ALGEBRA
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 Differentiation of linear matrix equation

 Differentiation of a quadratic matrix equation
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 Least Squares Solution
 If A is a skinny matrix (n>m), and we wish to find x 

for which

 Since A is skinny, the problem is over-constrained 
 No solution exists

 Instead, minimize the square of the error between Ax
and b
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LINEAR ALGEBRA
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 Setting the derivative to zero

 Known as the pseudo-inverse

 This methodology is used over and over in the course
 Quadratic cost minimized to find closed form solution
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 Least Squares example
 Data fitting with polynomials

 Given a function of interest

 And a set of measurements b(tm)of that function at points tm

 Find the best polynomial fit for polynomial fP(t) of order P
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LINEAR ALGEBRA

2

1( )
1 25

g t
t




( ),    { 1, 0.99,...,1}m mb t t   

1 2 1( ) P
P Pf t x x t x t   



 Least Squares example
 Can formulate this as a least squares problem where 

we want to minimize the mean square error between 
polynomial prediction and measurement at each tm:

 The polynomial can be written as

 Use least squares solution method to find coefficients of f.
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LINEAR ALGEBRA
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5th order
10 Points

15th order
10 Points

5th order
100 Points

15th order
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SISO CONTROL

 One input, one output, one transfer function between 
the two

 Model requires
 transfer function from single input to single output
 initial conditions to start from (usually assumed 0)

 Model hides inner workings of plant
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STATE SPACE: A NEW SYSTEM MODEL

 Multi-Input-Multi-Output (MIMO) model, maintains 
complete plant picture
 Matrix and vector notation, use power of linear algebra for 

many key results

 Definition: The state of a system is a vector of system 
variables that entirely defines the system at a specific 
instance in time.
 Example: at t=0, initial conditions define a state vector.
 Entire history of state variables can be discarded, only 

need current state and system dynamics to continue 
forward in time. 15



STANDARD FORM DYNAMICS

 Linear first order time-invariant dynamics in 
continuous time
 Update equation

 Measurement equation

 A, B matrices: state derivatives can depend on any state or 
input variable

 C, D matrices: output can depend on any state or input 
variable

( ) ( ) ( )x t Ax t Bu t 

( ) ( ) ( )y t Cx t Du t 
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STANDARD FORM DYNAMICS

 Linear first order time-invariant dynamics in discrete 
time
 Update equation, timesteps indexed by t

 Measurement equation

 A, B matrices: state update can depend on any state or 
input variable

 C, D matrices: measurements can depend on any state or 
input variable

1t t tx Ax Bu 

t t ty Cx Du 
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 Equation of Motion

 Transfer function

 Four variables in ODE: one input, one variable 
defined by ODE, two states remain. 

EXAMPLE – SPRING MASS DAMPER
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 Motion Model

 Measurement model: position and velocity sensors

EXAMPLE CONT’D
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IN TRANSFER FUNCTION FORM

 Take Laplace transform of update equation

 Solve for X(s), with x(0)=0

 Combine with measurement model
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BLOCK DIAGRAM

 Continuous LTI State space model as a block 
diagram (Laplace Domain)
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EXAMPLE: FIND TFS
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EXAMPLE: FIND TFS
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 So roots of det(sI-A) determine poles of open loop system
 Well known equation in linear algebra: eigenvalues/eigenvectors
 Open loop poles are eigenvalues of A
 Holds for all sizes of A, not just 2X2
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STATE FEEDBACK CONTROL

 If C = I and D = 0, full state feedback
 More than one signal, in fact everything we could possibly 

need

 Assume R(s) = 0 (regulator)
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STATE FEEDBACK

 Closed loop transfer function

 Now, eigenvalues of A-BK are poles of closed loop 
system

 In fact, since there is one K for every eigenvalue, 
we can place the closed loop poles anywhere we’d 
like.

1( ) ( )
( )

X s sI A BK
R s

  

25



EXAMPLE: POLE PLACEMENT

 Lets place closed loop poles at
 Note:

 Match coefficients of polynomials
 Desired = actual
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EXAMPLE: CONTROLLER

 What is full state feedback?

 PD control
 To add integral control, add an 

integrator state
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CONTROLLABILITY

 Can I get there from here?

 A system is controllable if for any set of initial and 
final states, x(0) and x(T), there exists a control input 
sequence, u(0) to u(T), to get from x(0) to x(T).

 Can be checked easily: The following matrix must be 
full rank

 2 1rank nB AB A B A B n   
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OBSERVABILITY

 Can I see there from here? 
 Given any sequence of states x(0) to x(T), inputs u(0) 

to u(T) and outputs y(0) to y(T), a system is 
observable if the state can be uniquely determined 
from the outputs alone. 

 Again, an easy check on the observability matrix 
determines if a system is observable

2

1

rank

n

C
CA
CA n

CA 

  
  
  
   
  
  
    


29



OPTIMAL CONTROL

 Since we can place poles anywhere, can change 
objective of control design

 Minimize quadratic errors in states and 
quadratic use of inputs

 Penalize big deviations more heavily that small ones
 Quadratic cost and linear dynamics result in a time 

invariant control law, another way to set the gains 
for state feedback control

0,
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OPTIMAL ESTIMATION

 The second half of the model describes the relationship 
between the state and the measured outputs.
 Any sensor dynamics must be included in the state

 In reality, both disturbances and noise will exist

 Assume w, v are Gaussian white noise with covariance Q, 
R

 Assume u(t) is known exactly
 Formulate minimum mean squared error estimation 

problem, results in Kalman filter

( ) ( ) ( ) ( )x t Ax t Bu t w t  
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STATE SPACE MODEL
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